
webFuzz: Grey-Box Fuzzing
for Web Applications

Orpheas van Rooij(B), Marcos Antonios Charalambous, Demetris Kaizer,
Michalis Papaevripides, and Elias Athanasopoulos

University of Cyprus, Nicosia, Cyprus
{ovan-r01,mchara01,dkaize01,mpapae04,eliasathan}@cs.ucy.ac.cy

Abstract. Fuzzing is significantly evolved in analysing native code,
but web applications, invariably, have received limited attention until
now. This paper designs, implements and evaluates webFuzz, a gray-box
fuzzing prototype for discovering vulnerabilities in web applications.

webFuzz is successful in leveraging instrumentation for detecting
cross-site scripting (XSS) vulnerabilities, as well as covering more code
faster than black-box fuzzers. In particular, webFuzz has discovered one
zero-day vulnerability in WordPress, a leading CMS platform, and five
in an online commerce application named CE-Phoenix.

Moreover, in order to systematically evaluate webFuzz, and sim-
ilar tools, we provide the first attempt for automatically synthesiz-
ing reflective cross-site scripting (RXSS) vulnerabilities in vanilla web
applications.

1 Introduction

Automated software testing, or fuzzing, is an established technique for analyz-
ing the behaviour of applications, and recently has been focused, among others,
in finding unknown vulnerabilities in programs. The drive to discover bugs in
software through an automated process has progressed with the introduction of
American Fuzzy Lop (AFL) [47], a state-of-the-art fuzzer that leverages the cov-
erage feedback from the instrumented target program. In creating this feedback
loop, fuzzers can significantly improve their performance by determining whether
an input is interesting, namely, it triggers a new code path, and use that input
to produce other test cases.

Although automated software testing has become a burgeoning field of
research, it still has a long way to go, especially for web applications [17]. On the
other hand, the proliferation of the web attracts many more malicious attacks
on web applications. This predicates a strong need for the development of auto-
mated vulnerabilities scanners that target web applications as well as for auto-
mated vulnerabilities injection tools to evaluate the former.

Traditionally, fuzzers come under three categories; black-, white- or grey-box
depending on the level of awareness they have of the target program’s structure.
Black-box fuzzers are unaware of the internal program structure, that is, their
c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12972, pp. 152–172, 2021.
https://doi.org/10.1007/978-3-030-88418-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88418-5_8&domain=pdf
https://doi.org/10.1007/978-3-030-88418-5_8

wbFuzz: Grey-Box Fuzzing for Web Applications 153

target is a black-box, no feedback other than what is directly observable is pro-
vided. One of their main advantages is their low overhead which allows them to
exercise the program under test with millions of inputs. In this way their chances
of triggering a bug increases. On the other hand, their lack of knowledge on the
program’s structure comes with a cost. AFL Fuzzer has shown that its feedback
loop that uses previously generated interesting inputs to built new test cases is a
key idea for successful bug discovery [13,47]. Black-box fuzzers though lack the
ability to make sound judgements on what is considered interesting input [35,39].
As a result they either do not retain generated inputs for further mutation or
the heuristic used to identify favorable inputs is insufficient as it can only rely
on what is observable in the application response. This limits the effectiveness
of black-box solutions.

On the other end of the scale exist the white-box solutions that require access
to source code and rely heavily on static-analysis. Most of these approaches uti-
lize constraint-solving and a combination of symbolic and concolic execution
[3,4,6] to identify vulnerable code statements. Although sophisticated in their
approach, their inherent limitation lies in the computationally demanding con-
straint solver. For instance, tools such as Chainsaw [3] and Navex [4] utilise static
analysis to perform a mapping between source variables such as URL parame-
ters to sink statements, that is, server-side code statements (such as the print
command) that output the source back to the client. Creating this source-sink
pair link and identifying whether sanitisation happens along the way is the key
ingredient in exposing a vulnerability. For each associated pair to be created
though lies an expensive constraint solving operation, and the magnitude of this
problem only increases with the number of sources and sinks.

Coverage-based grey box fuzzing comes at an ideal compromise between
sophistication and scalability. Instead of statically analysing the source code, it
relies on input mutations and lightweight coverage feedback to explore the input-
space within a limited time frame. Given that the input-space can be enormous,
a fuzzer can leverage the instrumentation feedback to identify interesting inputs
and built new test cases from them. Ways of defining an interesting input can
be if it explores new unobserved code paths or if it exercises the business logic
of the application and does not fail early on in the input-format checks. In this
way, it maximises code coverage, whether that is on a global or function level
[12], thus increasing the chances of triggering a vulnerability.

In this paper, we design, implement and evaluate a coverage-based grey-box
fuzzing solution for web applications aimed at detecting reflective and stored
cross-site scripting vulnerabilities. For native applications, instrumentation is
carried out at the intermediate representation of the application’s code (e.g., at
the LLVM’s IR), when the source code is available, or directly to the binary [47].
For web applications, instrumentation is challenging, since (a) several different
frameworks are used to realize web applications, (b) applications are executed
through a web server and (c) there is no standard intermediate representation
of web code. webFuzz applies all instrumentation at the abstract-syntax tree
layer of PHP applications. Therefore, our instrumentation can cover a significant

154 O. van Rooij et al.

amount of available web code, while it is generic enough – labeling basic blocks,
collecting feedback, and embedding the feedback to a shared resource can all be
translated to other web languages without facing many challenges.

Evaluating fuzzing is another challenging task [28], since migrating known
vulnerabilities to existing software, in order to test the capabilities of the fuzzer in
finding bugs, can be a tedious process [32]. Thus, for evaluating webFuzz, but also
other fuzzers for web applications, we develop a methodology for automatically
injecting bugs in web applications written in PHP. Our methodology is inspired
by LAVA [15] and targets web applications instead of native code. Injecting
vulnerabilities in web code, again, is challenging, since important tools used
for analyzing native code and injecting vulnerabilities (e.g., taint-tracking and
information-flow frameworks) are not available for web applications. To overcome
this lack of available tools, our vulnerability injection methodology leverages the
instrumentation infrastructure we use for building webFuzz, in the first place.

1.1 Contributions

In this paper, we make the following contributions.

1. We design, implement and evaluate webFuzz, a prototype grey-box fuzzer cre-
ated for discovering vulnerabilities in web applications. We thoroughly evalu-
ate webFuzz in terms of efficiency in finding unknown bugs, of code coverage
and throughput. Indicatively, webFuzz can cover about 27% of WordPress
(almost half a million LoCs of PHP), in 1.4 days (2,000 min) of fuzzing. It has
additionally managed to uncover 1 zero-day RXSS bug in the latest version
of WordPress, and 5 zero-day XSS bugs in an active commerce application
named CE-Phoenix. Compared to Wfuzz, a prominent open-source black-box
fuzzer, webFuzz also finds more real-life and artificial XSS bugs.

2. We design and implement a methodology for automated bug injection in
web applications written in PHP. Our bug-injection methodology is not only
essential for evaluating webFuzz but also vital for the progression of further
research in vulnerability finding for web software.

3. To foster further research in the field, we release all of our contributions,
namely the toolchain for instrumenting PHP applications, the actual fuzzer,
and the toolchain for injecting bugs in web applications, as open-source. The
source code can be found at: https://bitbucket.org/srecgrp/webfuzz-fuzzer

2 webFuzz

This section describes the architecture of webFuzz. We begin by discussing how
webFuzz instruments a target application before analysis, and then elaborate on
how a fuzzing analysis works by expanding on how inputs are mutated, responses
are analyzed and vulnerabilities are detected. We also discuss how we minimize
fuzz targets in order to favor the ones that lead eventually to better code cover-
age.

https://bitbucket.org/srecgrp/webfuzz-fuzzer

wbFuzz: Grey-Box Fuzzing for Web Applications 155

2.1 Instrumentation

webFuzz instruments PHP applications in the Abstract Syntax Tree (AST) level
of the code to provide coverage information in the form of basic block or branch
coverage [5]. To achieve this, it parses the AST of each PHP source file using
the PHP-Parser [36] library, it identifies basic blocks during the AST traversal
process, and lastly appends to each block identified extra stub code. In order
to output the coverage feedback at the end of the execution, stub code is also
inserted at the beginning of every source file. We elaborate more on this mech-
anism, below.

Instrumentation Level. Basic blocks are maximal sequences of consecutive
statements that are always executed together (i.e., contain no branching state-
ments) [2]. In a Control Flow Graph (CFG), the basic blocks correspond to
the nodes in the graph. In order to measure code coverage, it is sufficient to
identify the executed blocks and their order of execution. Identification of the
blocks happens during the AST traversal process, in which the type of each
statement encountered is inspected and modified accordingly. webFuzz identifies
the beginning of a basic block as:

– the first statement in a function definition;
– the first statement in a control statement;
– the exit statement in a control statement.

Control statements are all conditional, looping and exception handling con-
structs. Although expressions with logical operators can also be composed out of
multiple basic blocks due to short-circuit evaluation, for the sake of performance
webFuzz does not instrument them.

Coverage. Basic-block coverage provides the least granularity as it only mea-
sures which basic blocks get executed irrespective of their order. Branch coverage
enhances the accuracy by measuring the pairs of consecutive blocks executed.
The latter method is also known as edge coverage method, as one pair corre-
sponds to an edge in the CFG of a program. We further focus on the implemen-
tation of the most complex case, namely the edge coverage.

Inspired by the AFL [47] method of providing edge coverage information,
we have adapted a similar approach for web applications. Listing 1.1 shows the
instrumented version of a function foo. At the beginning of every basic block,
a unique randomly generated number (the basic block’s label) is XORed with
the label of the previously visited block. The result of this operation represents
the edge label. The edge label is used as index in the global map array where the
counter for the edge is incremented.

The last statement in the stub code performs a right bitwise shifting on the
current basic block label and stores the result as the label of the previously
visited block. The shifting is needed to avoid cases where a label is XORed
with itself thus giving zero as a result. This can happen for instance with simple
loops that do not contain control statements in their body [47]. The super-global
variable of PHP (GLOBALS) allows us to have access to the instrumentation data
structures anywhere in the code, regardless of scope.

156 O. van Rooij et al.

Feedback. Coverage information is reported at the end of program execution.
To achieve this, we prepend to every source file additional header stub code
that will be the first statements executed in a program. We additionally utilize
the inbuilt function register shutdown function, where a custom function is
specified that will automatically get called at the end of the program. In this
header stub, a function is registered that will write the resulting map array to
a file, HTTP headers or shared memory region and the instrumentation data
structures are initialised. Listing 1.2 shows the header stub code for outputting
coverage information in a file. webFuzz will place this stub after any Namespace
and Declare statements present in the source file, as PHP dictates that these
must be the top-most statements. The header stub follows that will only be
called once during program execution (guarded by the enclosing if) and the
remaining statements in the source file come next.

wbFuzz: Grey-Box Fuzzing for Web Applications 157

2.2 Fuzzing Analysis

webFuzz is a mutation based fuzzer that employs incremental test case creation
guided by the coverage feedback it receives from the instrumented web applica-
tion. It additionally features a dynamic builtin crawler, a proxy for intercepting
browser requests, easy session cookie retrieval and a low false-positive XSS detec-
tor. We expand on all of these aspects below.

Workflow. A fuzzing session consists of multiple workers continuously sending
requests and analysing their responses. The high-level process that each worker
performs is as follows. Initially, webFuzz fetches an unvisited GET or POST
request that has been uncovered by the builtin crawler. If no such request exists,
webFuzz will create a new request by mutating the most favorable previous
one. It then sends the request back to the web application and reads its HTTP
response and coverage feedback. Furthermore, webFuzz parses the HTML of the
response to uncover new links from anchor and form elements and scans the
document for XSS vulnerabilities. Finally, if the request is favorable (deduced
from its coverage feedback) webFuzz computes its rank and stores it for future
mutation and fuzzing.

The fuzzing session can be run as an authenticated user by spawning a
browser window for the user to login and for webFuzz to retrieve the session
cookies.

Mutation. Mutating inputs is a necessary step in the fuzzing process in order
to maximize the number of paths explored and to trigger bugs lying in vulner-
able pieces of code. The choice of mutation functions is both a challenging and
empirical task. Aggressive mutating functions can destroy much of the input
data structure which will result in the test case failing early on during program
execution. On the other hand, too conservative mutations may not be enough to
trigger new control flows [46]. Conversely to many fuzzers that employ malicious
payload generation via the use of a specific attack grammar [18,39], webFuzz
takes a mutation-based approach [37]. It starts with the default input values of
an application (e.g., specified by the value attribute in a HTML input element),
and performs a series of mutations on them. Currently five mutation functions
are employed which modify the GET and/or POST parameters of a request. They
are as follows.

– Insertion of real-life XSS payloads found in the wild;
– Mixing GET or POST parameters from other favourable requests (in evolution-

ary algorithms this is similar to crossover);
– Insertion of randomly generated strings;
– Insertion of HTML, PHP or JavaScript syntax tokens;
– Altering the type of a parameter (from an Array to a String and vice versa).

Some parameters may also get randomly opted out from the mutation pro-
cess. This can be useful in cases where certain parameters need to remain
unchanged for certain areas of the program to execute.

158 O. van Rooij et al.

Proxy Server. Due to the heavy utilization of client-side code in most web
applications, multiple URL links are generated on the fly by the browser’s
JavaScript engine instead of being present in the HTML response of the server.
Since webFuzz only searches for new URL links in the HTML response and
does not execute any client-side code, such JavaScript generated URLs will be
missed from the fuzzing process. To solve this issue, webFuzz provides an option
to initiate a proxied session before the fuzzing process begins, where the web
application loads in a web browser environment and the user is given the ability
to exercise the functionality of the web application manually by submitting new
requests. As soon as the proxied web browser session is closed by the user, web-
Fuzz retrieves all the URL links send during this session, adds them as possible
fuzz targets and begins the fuzzing process.

Dynamic Crawling Functionality. Every HTML response received from the
web applications is parsed and analysed in order to effectively crawl the whole
application. HTML parsing is performed using the lenient html5lib [24] library
which adheres to the HTML specification thus ensures similar results with that of
web browsers. Using the parsed result, webFuzz can dynamically extract new fuzz
targets from links in anchor and form elements, while also retrieve inputs from
input, textarea and option elements. The crawler module additionally filters
out any previously observed links to avoid crawling the same links repeatedly.

Vulnerability Detection. webFuzz is currently designed to detect stored and
reflective cross-site scripting bugs produced by faulty server-side code. To ensure
a low false positive rate webFuzz utilizes lightweight JavaScript code analysis.
To identify whether a link is vulnerable, JavaScript code present in the HTML
responses is parsed to its AST representation using the esprima [19] library. As
every HTML document is parsed, identifying the executable HTML elements
and attributes is trivial. webFuzz will look for code in the following locations in
the HTML.

– Link attributes (e.g., href) that start with the javascript: label;
– Executable attributes that start with the on prefix (e.g. onclick);
– Script elements.

The XSS payloads webFuzz injects to GET and POST parameters are designed
to call the JavaScript alert function with a unique keyword (having a fixed
prefix) as input. The goal for the detector is to find the corresponding alert
function call during the AST traversal process. If such a function call exists, it
can infer that the XSS payload is executable, thus proving that the responsible
link is vulnerable.

Additionally, in order to pinpoint which link triggers a found vulnerability,
webFuzz will search in the request history and look for the request that contained
the unique keyword present in the executable alert function call. Since this
request history bookkeeping is a memory intensive process, webFuzz provides an
option to limit the history size up to a maximum size.

Culling the Corpus. The majority of the mutations performed on requests
are unsuccessful at triggering new code paths. It is thus essential to shrink the

wbFuzz: Grey-Box Fuzzing for Web Applications 159

corpus of fuzz targets and store only the most favorable. In this way, webFuzz
can reduce its memory footprint and ensure test case diversity.

Algorithm 1. Algorithm to decide whether a new request will be kept for future
fuzzing

function AddRequest(hashTable, heapTree, newRequest)
for (label, hitCount) in newRequest.coverage do

bucket ← floor(log2(max(hitCount, 128)))

existingRequest ← hashTable[blockLabel][bucket]
if existingRequest == ∅ then

hashTable[blockLabel][bucket] ← newRequest

else if newRequest is lighter than existingRequest then
hashTable[blockLabel][bucket] ← newRequest

if existingRequest /∈ hashTable then
remove existingRequest from HeapTree

end if
end if

end for
if newRequest ∈ hashTable then

add newRequest to HeapTree
end if

end function

Algorithm 1 shows the AFL-inspired algorithm that determines if a new
request is kept for future fuzzing or is discarded. The coverage feedback of a
new request is checked against a hash table that holds information about all the
instrumentation points (labels) that have been observed. Each entry in the table
is split to 8 buckets, with each bucket corresponding to the number of times
the label was executed in a single run. At each label-bucket entry, the lightest
request that triggered this combination is stored. The use of buckets aims to
distinguish requests that have executed a label a few times versus triggering it
many more times [47].

When the hit-count of a label falls in a bucket that has already been observed,
there is a clash for the same bucket in the same entry in the dictionary. The
two requests are compared in terms of execution time and request size and the
lightest of the two gets the entry.

As soon as a request has no longer entries in the table it is removed from
the fuzzing session. This is done by removing it from an internal heap tree that
stores the available fuzz targets in a semi-ordered fashion.

On the other hand, if a request has successfully acquired at least one entry
in the hash table, it is inserted to a heap tree that contains all the favorable
requests. This tree is consulted every time webFuzz has run out of new unvisited

160 O. van Rooij et al.

links, and thus requests the most favorable previous request to mutate. To rank
requests we calculate a weighted difference score based on their attributes. The
metrics it uses are listed below. Note that a (+) symbol indicates higher values
are better while the opposite applies to (-).

– Coverage Score (+): total number of labels it has triggered;
– Mutated Score (+): approximation on the difference of code coverage with

its parent request (the request it got mutated from);
– Sinks Present (+): whether injected GET or POST parameters managed

to find their way in the HTML response;
– Execution Time (-): round-trip time of the request;
– Size (-): total number of characters in the GET and POST parameters;
– Picked Score (-): the number of times it has been picked for further muta-

tion (this ensures that all requests in the heap tree will eventually be fuzzed).

3 Bug Injection

In this section we discuss a technique for injecting synthetic bugs in PHP. Such
synthetic bugs can be useful not only for evaluating webFuzz, but also other
bug-finding techniques for web applications. Our methodology is inspired by
LAVA [15], a tool which is widely used to inject bugs into native code. Web vul-
nerabilities are different from memory-corruption ones, however the underlying
mechanics of LAVA are still useful. In practice, we can inject hundreds of com-
mon web vulnerabilities, such as reflective cross-site scripting, and file inclusion,
in a reasonable time period.

The artificial bugs should have several characteristics. They must be easy
to inject, be plenty, span throughout the code, and be triggerable using only a
limited set of inputs [15]. The vulnerability should also be injected in appropriate
places by adding new code or modifying existing one. Lastly each injected bug
should come with an input that serves as an existence proof.

3.1 Analysis and Injection

Using our custom instrumentation toolkit, we analyze the PHP source code
dynamically to identify potential basic blocks and input parameters suitable for
bug injection. Static analysis techniques using control flow and data flow graphs
is also an option, however it would be more challenging due to the dynamically
typed nature of PHP.

wbFuzz: Grey-Box Fuzzing for Web Applications 161

In PHP, users’ input is largely given using the super-global arrays the lan-
guage provides, such as POST, GET and REQUEST. By definition these variables
contain the users’ input unmodified. Discovering input variables that do not alter
the execution path taken by a request is useful, as those variables can be used
to synthesize an artificial bug.

For instance, in Listing 1.3 we present a possible pattern that can occur inside
a PHP program. Specifically, variable POST[’v2’] can be used to synthesize a
bug in basic block D as its value is not used inside the branch decisions to reach
the block. On the contrary, in basic blocks A, B and C, the variable POST[’v1’]
cannot be used to synthesize a bug inside these blocks, as any changes to the
variable value would cause the blocks to not get executed. For this reason, finding
the right input parameters and basic blocks to inject a bug into requires analyzing
the branch decisions that reach it.

Due to the complexity in performing such analysis, our tool instead relies
on a random, trial and error technique to determine the right input and basic
block pairs to inject a bug. The bug injection process is as follows. The tool
firstly crawls the web application and finds all the unique URLs. For each URL,
it will extract the input fields from HTML forms and URL parameters, together
with all the basic blocks triggered from this request. Using some block selection
criteria (e.g. basic block nested level), it selects one of the blocks reported and
it inserts a candidate bug in its location in the source code. The same request
is sent to the web application with the input parameters modified to trigger
the candidate bug, and if the bug is triggerable it is then considered a working
artificial bug. This can only happen if the input parameters used in the artificial
bug still trigger the execution path to the selected basic block.

3.2 Bug Template

Each candidate bug is created from a bug template that represents its general
structure. The template can consist of one to three input fields from either GET
or POST parameters. An example of a template is shown in Listing 1.4.

162 O. van Rooij et al.

The MAGIC value in Listing 1.4 is a random number that needs to be guessed
to execute the bug. This magic number must be placed in POST variable v1 and
the bug payload in variable v2.

The format of the template is designed to mimic how a real-world bug may
be hidden inside a deeply nested block. The stacked if statements also help in
the process of guessing the magic number by rewarding with a new basic block
(i.e. increase in code coverage) every time a correct digit is found. A bug finding
tool that has access to information on the executed basic blocks can identify
which inputs are closer to executing an artificial bug.

The aim of the stacked if approach is similar to the value profile feature
provided by libfuzzer [40], with the difference that libfuzzer inherently sup-
ports instrumenting comparison instructions whereas webFuzz requires explicit
unrolling of the comparison instruction as a series of stacked if statements.

The vulnerability the sink aims to introduce ranges from cross-site scripting
bugs due to unsafe use of echo and print statements to include statements
for file inclusion bugs. A plethora of different sink formats are also available
which can further test the bug finding tool’s ability in generating the correct
bug payload format. Some examples for cross-site scripting bugs include unsafe
code inside JavaScript block and unsafe code inside HTML attributes.

Using our bug injection tool, we have added numerous triggerable bugs in
popular web applications, such as WordPress. In Sect. 4 we evaluate webFuzz’s
performance in finding these bugs.

4 Evaluation

In this section we evaluate webFuzz and the bug injection methodology. Our
evaluation aims to answer the following research questions (RQ).

– RQ1 Does our approach of coverage-guided input selection and mutation
achieve high code coverage? Do we still notice an increase in code coverage
after the initial crawling process is finished (i.e., are the input mutations
effective in triggering new paths)?

– RQ2 What is the combined overhead of our solution (instrumentation and
webFuzz processing) in terms of throughput, and how does this compare with
black-box approaches?

wbFuzz: Grey-Box Fuzzing for Web Applications 163

– RQ3 Can webFuzz detect more artificial and real-life XSS bugs in comparison
to other fuzzers within a limited time frame?

For RQ1 we measure how the accumulated code coverage develops in our test
subjects for a fuzzing session lasting 35 h in each. The experiment is thoroughly
analysed in Sect. 4.1. For RQ2-3, we compare webFuzz with Wfuzz [31], one of
the most prominent open-source black-box fuzzers, and we present the results in
Sects. 4.2 and 4.3. Finally, we use the following web applications for all experi-
ments: (1) CE-Phoenix 1.0.5 (e-commerce application), (2) Joomla 3.7.0 (CMS),
(3) WackoPicko (a web application with known vulnerabilities), (4) WeBid 1.2.1
(online auctions application), and (5) WordPress 4.6.19 (CMS).

All experiments are executed on four identical Ubuntu 18.04 LTS Linux
machines that possess a quad-core Intel Xeon W-2104 Processor @3.20 GHz and
64 GB of RAM. In total, we have spend around 1000 computational hours in
running our experiments.

The amount of manual effort needed in setting up the experiments varies
depending on the application. Applications such as WeBid and CE-Phoenix are
more susceptible to damage caused by sending unexpected input and thus all
sensitive endpoints need to be firstly identified and blocked from the fuzzing
process. Additionally, webFuzz has a number of tunable parameters such as the
weight of each attribute when calculating the request’s rank and the weight of
each mutation strategy. Although webFuzz comes with sane defaults for these
values, we have tweaked these parameters in each of our experiments to increase
the throughput and code coverage but at the cost of more manual effort.

4.1 Code Coverage

Code coverage is an important metric for a fuzzer, as higher coverage entails
higher chances of triggering vulnerabilities. Thus is justifiable as to trigger a
given bug the fuzzer must be able to reach the associated code path where the
bug lies. In addition, code coverage can provide feedback on the effectiveness of
the mutation functions employed and, in particular, whether they trigger new
code paths.

Methodology. All five web applications are instrumented using the hybrid
node-edge method, that provides coverage information for both the basic-blocks
and the pairs of consecutive blocks (edges) executed. Since the actual number
of all possible edges is not known (as that requires CFG generation), we can
use the block count to get an estimate on the code coverage as a percentage. In
addition, we run the proxy feature as described in Sect. 2.2 in all five projects
to include the JavaScript generated URLs in the list of fuzzing targets.

Analysis. Figure 1 shows how the accumulated code coverage progresses with
time in the five applications. webFuzz managed to trigger more than 20% of the
total basic blocks in all five applications, with CE-Phoenix managing to reach
code coverage as high as 34% and with WackoPicko reaching 41%. The lenient
and sometimes non-existent input validation rules with CE-Phoenix makes the

164 O. van Rooij et al.

Fig. 1. Accumulated Basic-Block coverage achieved with webFuzz in five web applica-
tions. The figure on the left shows the coverage in logarithmic time scale, and on the
right in linear time scale.

fuzzing process particularly effective as seen from the high code coverage. web-
Fuzz can mutate form inputs with much freedom without requiring the input to
adhere to stringent validation rules. The minimalistic nature of the WackoPicko
app on the other hand, allowed webFuzz to quickly crawl the application within
the first few minutes, while the input mutations only slightly increased the code
coverage with time.

With WordPress, at around 350 min in the fuzzing session the mutation pro-
cess kicks in as webFuzz finished the initial crawling process. The code coverage is
seen to take a steep increase, indicating that the mutation functions employed are
largely effective in triggering new code paths. A similar pattern can be observed
with Joomla, albeit on a smaller scale. Long after the initial crawling finished, at
600 min in, the mutation functions manage to trigger multiple new basic blocks
increasing the code coverage by 1%.

The code coverages reached by webFuzz is comparable to that of native appli-
cation fuzzers such as AFL, AFL-Fast, TortoiseFuzz, FairFuzz and MOPT. Wang
et al. have measured the code coverage of seven native fuzzers in 12 applications
in their evaluation of TortoiseFuzz [44]. Their work showed that the average
coverage reached for a application ranged from 4.55% ± 1.26 up to 76% ± 0.3
and with an average coverage throughout all fuzzers and applications being at
27.4%. webFuzz in the five test subjects tested reached 32.8% on average.

4.2 Throughput

One reason for the effectiveness of fuzzers in discovering vulnerabilities is their
ability to test millions of inputs in a short time frame. For this reason we conduct
an experiment to test the difference in throughput (requests/sec) between the
black-box fuzzer Wfuzz and webFuzz.

Methodology. We measure the throughput of the two fuzzers during fuzzing
sessions lasting 1 h for each web application. We further measure how the

wbFuzz: Grey-Box Fuzzing for Web Applications 165

throughput varies with different worker counts, i.e., number of parallel con-
nections used. webFuzz uses the instrumented whereas Wfuzz uses the original
versions of the web applications. In addition, because Wfuzz requires explicit
definition of the fuzzing payloads to use, we have instructed it to generate XSS
payloads in a similar fashion to webFuzz. Lastly, due to Wfuzz’s limited crawl-
ing functionality, we assist the fuzzer by crawling each web application using
our tools. We then instruct Wfuzz to fuzz each link in the crawler’s result in a
round-robin fashion.

Table 1. Average and Maximum throughout achieved with webFuzz and Wfuzz using
different worker counts. Each cell states the throughput (requests/sec) at the particular
scenario.

Fuzzer workers webFuzz Wfuzz

4 8 16 4 8 16

Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max

CE-Phoenix 83 141 70 183 62 182 133 392 137 446 133 453

Joomla 36 50 46 74 45 74 272 896 61 174 63 250

WackoPicko 52 260 45 170 128 152 480 976 491 1008 496 1004

WeBid 29 75 26 89 18 81 143 418 43 57 27 30

WordPress 8 33 8 34 10 36 17 142 72 194 62 176

Analysis. In Table 1 we see the average and maximum throughput achieved by
the two fuzzers. Depending on the size of the web application, the bottleneck
factor that limits the throughput is either the web server or the fuzzer. With
WeBid, a relatively small project, we notice with both fuzzers a slight decrease
in throughput when increasing the number of workers. The bottleneck in both
situations is the fuzzer, where due to their single-core nature, the core is utilized
at the fullest with just 4 worker counts, thus not benefiting from higher worker
counts. On the other hand, WordPress benefits from higher worker counts due
to its large project size. The average round-trip time is relatively high, thus both
fuzzers can benefit from more workers as more requests are sent in parallel and
the fuzzing process does not stall.

In general, the introduction of instrumentation, HTML parsing, and coverage
analysis takes a toll on the performance, as Wfuzz is seen to reach throughputs
up to ten times higher than webFuzz. Section 4.3 shows that this overhead is
outweighed by the improved detection speed of webFuzz.

4.3 Vulnerability Detection

The crucial test for webFuzz is whether it can outperform black-box fuzzers in
detecting XSS vulnerabilities. To test this, we fuzz the set of web applications
using webFuzz and Wfuzz and we compare the findings. To further evaluate

166 O. van Rooij et al.

our bug injection tool, we artificially inject XSS vulnerabilities in the five web
applications and measure the number of artificial bugs found by both fuzzers.

Methodology. We fuzz every web application for at least 50 hours with each
fuzzer. We again assist Wfuzz in crawling and payload selection as described in
Sect. 4.2.

Table 2. Number of real-life (known from CVE records) and artificial XSS bugs found
with webFuzz and Wfuzz. Each cell states the number of bugs found in respect to the
total bugs present. The zero-day bugs found by each fuzzer are additionally stated.

Fuzzer webFuzz Wfuzz

Bug type Zero-day Real-life Artificial Zero-day Real-life Artificial

CE-Phoenix 5 14/15 23/541 1 13/15 2/541

Joomla 0 1/32 2/64 0 0/32 0/64

WackoPicko 0 3/3 2/48 0 3/3 0/48

WeBid 1 7/7 3/72 1 7/7 0/72

WordPress 1 2/4 3/241 0 1/4 3/241

Analysis. Table 2 shows the results of our experiments. webFuzz outperforms
Wfuzz in all five applications. webFuzz additionally manages to find zero-day
XSS bugs in the latest versions of WordPress and CE-Phoenix. We have reported
all found vulnerabilities to their developers, they have acknowledged our find-
ings, and we have been awarded $500 from WordPress for our responsible disclo-
sure. The official WordPress bug report is Report 1103740 and will be publicly
disclosed as soon as a bug fix is available.

Beginning with CE-Phoenix, both fuzzers manage to uncover multiple bugs.
In total webFuzz found 14 real XSS bugs and 5 zero-day bugs which were not
listed in CVE records. Interestingly, webFuzz has found more XSS bugs in this
project than Wfuzz. One reason for this lies in the request ranking mechanism
employed by webFuzz that prioritizes requests that have high code coverage and
contain sinks. As a result, the vulnerable URLs receive more fuzzing time than
in the round-robin approach used by Wfuzz.

The input validations and heavy utilization of client-side JavaScript code in
Joomla has proven to be an obstacle in the fuzzing process as webFuzz found
just one out of the 32 real XSS bugs present.

In the WackoPicko application, both fuzzers manage to find all three XSS
vulnerabilities that it contained. The required XSS payload structure is relatively
simple so the main feature needed to find the bugs is a good crawler. For this
reason, if Wfuzz was not extended with additional crawler functionality, it would
not be able to find the multi-step XSS present in the application.

Continuing with WeBid, this inactive project was known to contain 7 XSS
vulnerabilities from the CVE [14] records on it. Since the complexity of the real

https://hackerone.com/reports/1103740

wbFuzz: Grey-Box Fuzzing for Web Applications 167

bugs present in this project is relatively simple – required simple payload format
and little crawling – both fuzzers manage to find all known real-life XSS bugs
and an additional unlisted XSS bug.

With WordPress, we enable four third-party plugins that each contained one
XSS vulnerability. webFuzz uncovers two out of the four plugin bugs, as the other
two bugs require complex JSON formatted XSS payload or a GET parameter
not present in the HTML responses.

The zero-day RXSS bug in WordPress consisted of finding a vulnerable GET
parameter in a link and inserting a specially formatted payload to effectively
bypass any sanitization steps. Two features employed by webFuzz have accel-
erated the finding of this bug, which are the source-sink identification and the
executed basic block count. Firstly, by analysing the HTML response and finding
out that the GET parameter is outputted in the response, webFuzz prioritized
the request using its request ranking mechanism. Additionally, the needed pay-
load format exercised more code paths in the input parsing process in comparison
to other types of payload formats which meant that webFuzz would be rewarded
with extra basic blocks when the right format was guessed. More specifically, in
order for the payload to avoid getting sanitized, it had to contain a leading hash-
tag character which the input parsing code would mistakenly treat it as a URL
fragment. When the URL fragment parsing code got executed though, webFuzz
received in its coverage feedback more basic blocks. These two features allowed
webFuzz to guess the right XSS payload faster as the request with the vulnerable
GET parameter containing a leading hashtag character scored higher.

Concerning the artificial RXSS bugs, webFuzz also finds more bugs than
Wfuzz due to the different XSS payload creation mechanisms. As it has been
described in Sect. 3.2, an artificial bug requires that a fuzzer finds the correct
XSS payload format and also guesses the right magic number. Since correctly
guessing a digit from the magic number triggers a new instrumentation point,
webFuzz detects this change and prioritizes the request that causes it. With this
method, the finding of a magic number is done incrementally, one correct digit
at a time, which is faster than Wfuzz’s blind fuzzing approach. As a real-world
analogy for this process, each digit of the magic number can represent one correct
mutation that gets us closer to the vulnerable sink.

5 Limitations

Concerning the Bug Injection tool, our prototype is currently limited to injecting
surface-level bugs that rely on magic byte guessing to increase their complexity.
Because the algorithm works by crawling the web application and semi-randomly
picking an executed basic block to inject a vulnerability to, the resulting bugs do
not rely on a complex internal application state for a bug to be triggered. More
work needs to be done to improve the bug injection algorithm by enhancing it
with means to monitor the application’s state (located in the document cookies
and in the database) and thus be able to expand its bug types to vulnerabilities
that rely on a series of dependent requests.

168 O. van Rooij et al.

Limitations in our fuzzer also exist, with the main limitation being the inabil-
ity for webFuzz to fuzz Single Page Applications (SPA). These types of web
applications heavily rely on JavaScript and the server responses are usually not
in HTML format. Since webFuzz will not execute client-side JavaScript code,
which in SPA applications is fully responsible for the HTML document creation
and rendering, our fuzzer will not be applicable in such situations.

6 Future Work

As it can be seen from Sect. 4.2, the instrumentation overhead and webFuzz’s
request processing introduces high overheads. Multiple research papers have
explored innovative ways to decrease the instrumentation overhead [1,10,43].
One common solution is to perform probe pruning which consists of finding the
minimum set of basic blocks, where instrumenting only these blocks still pro-
vides us enough information to distinguish all executions from each other, i.e., no
coverage information is lost. To perform this, CFG analysis must be performed
which is possible in PHP [7].

There are also plans to extend our detection capabilities to SQL injection
(SQLi) attacks which occur when untrusted data are sent to an interpreter or
database as part of a query. To achieve this, SQLi related attack payloads found
in the wild can be used as the base of the payload. To detect an SQLi vulnera-
bility, webFuzz can scan the HTML response for database related keywords or
for database hangs which can occur when a call to the database SLEEP command
successfully slips through the query.

Finally, we are also planning on introducing netmap [38], a tool to effectively
bypass the operating system’s expensive network stack and allow the client and
server to communicate faster.

7 Related Work

Native Fuzzing. Fuzzing has been perceived through several techniques and
algorithms over the years, initially with fuzzing native applications. There exist
the Black-box fuzzers [23,41,45] that are unaware of the fuzz target’s inter-
nals, and the white- and grey-box fuzzers that leverage program analysis and
instrumentation respectively to obtain feedback concerning the inputs’ precision
in discovering unseen paths [21,22,37,42,47] Additionally directed-based fuzzers
use the coverage feedback to direct the fuzzer towards particular execution paths
[21].

Web-app Fuzzing. Even though a huge effort is directed toward building
fuzzers with the aim to weed out vulnerabilities in native code, little attention
has been given to web application bugs. Tools currently available that target web
application vulnerabilities behave predominantly in a black-box fashion that are
subject to limitations due to limited knowledge of the application’s state [9,17].
Some examples are: Enemy of the State [16], a black-box fuzzer that attempts

wbFuzz: Grey-Box Fuzzing for Web Applications 169

to recreate the web application’s state machine from the application responses
and uses it to drive the fuzzing session. and KameleonFuzz [18], an evolutionary
algorithm based black-box fuzzer.

There have been attempts to overcome the shortcomings of black-box tech-
niques. White-box approaches for instance, utilize access to the web application’s
source code to create test cases intelligently [3,4,7,8,25–27,29,30]. Artzi et al.
[6] developed a tool for discovering web application vulnerabilities by collecting
information about the target extracted through concrete and symbolic execution.
Another tool combining static and dynamic analysis is Saner [8] which tries to
identify any sanitization processes that do not work as expected to, resulting in
allowing attackers to introduce exploits. Similarly other work [3,4], rely on static
analysis and constraint solving to identify vulnerable source-sink pairs that con-
tain insufficient sanitization. Backes et al. in their PHP aimed tool on the other
hand, rely on Code Property Graphs and on modeling of vulnerabilities as graph
traversals [7].

Contrary to the above research work for identifying web vulnerabilities, our
technique adopts the grey-box approach. webFuzz instruments the fuzz target
in order to create a feedback loop.

Vulnerability Injection. When evaluating automated vulnerability scanners,
there is this great need of ground truth corpora, programs that have realistic
vulnerabilities in known places. An example of such effort is Juliet [11], a suite
that consists of thousands of small programs in C/C++ and Java, that con-
tain various vulnerabilities (e.g., buffer overflows, NULL pointer dereference).
Another example of such suite is BugBox [33], a vulnerability corpus for PHP
web applications. However, these examples are pre-defined sets of vulnerable
programs, that while being helpful for evaluating vulnerability scanners, they
cannot simulate real world scenarios because of their small size. In contrast,
automated bug injection tools can simulate real world scenarios because they
are capable of injecting bugs in real-world programs. Main example of such tool
and the inspiration of our automated bug injection tool is LAVA [15] which can
automatically synthesize and inject thousands of bugs in native code programs.
Some other examples include SolidiFI [20], an automated vulnerability injection
tool targeted for evaluating smart contracts and EvilCoder [34], a framework
that finds and modifies potentially vulnerable source code.

8 Conclusion

In this paper we presented webFuzz, the first grey-box fuzzer for discovering vul-
nerabilities in web applications. webFuzz applies instrumentation on the target
web application for creating a feedback loop and utilizing it in order to increase
code coverage. Consequently it increases the number of potential vulnerabilities
found.

170 O. van Rooij et al.

Acknowledgements. We thank the anonymous reviewers for helping us to improve
the final version of this paper. This work was supported by the European Union’s
Horizon 2020 research and innovation programme under grant agreements No. 786669
(ReAct), No. 830929 (CyberSec4Europe) and No. 101007673 (RESPECT).

References

1. Agrawal, H.: Dominators, super blocks, and program coverage. In: Proceedings
of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 25–34 (1994)

2. Aho, A., Lam, M., Ullman, J., Sethi, R.: Compilers: Principles, Tech-
niques, and Tools. Pearson Education (2011). https://books.google.com.cy/books?
id=NTIrAAAAQBAJ

3. Alhuzali, A., Eshete, B., Gjomemo, R., Venkatakrishnan, V.: Chainsaw: chained
automated workflow-based exploit generation. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pp. 641–652
(2016)

4. Alhuzali, A., Gjomemo, R., Eshete, B., Venkatakrishnan, V.: NAVEX: precise and
scalable exploit generation for dynamic web applications. In: 27th USENIX Secu-
rity Symposium (2018)

5. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University
Press, Cambridge (2016)

6. Artzi, S., et al.: Finding bugs in web applications using dynamic test generation
and explicit-state model checking. IEEE Trans. Softw. Eng. 36, 474–494 (2010)

7. Backes, M., Rieck, K., Skoruppa, M., Stock, B., Yamaguchi, F.: Efficient and flex-
ible discovery of PHP application vulnerabilities. In: 2017 IEEE European Sym-
posium on Security And Privacy (EuroS&P), pp. 334–349. IEEE (2017)

8. Balzarotti, D., et al.: Saner: composing static and dynamic analysis to validate san-
itization in web applications. In: 2008 IEEE Symposium on Security and Privacy
(SP 2008) (2008)

9. Bau, J., Bursztein, E., Gupta, D., Mitchell, J.: State of the art: automated black-
box web application vulnerability testing. In: 2010 IEEE Symposium on Security
and Privacy (2010)

10. Ben Khadra, M.A., Stoffel, D., Kunz, W.: Efficient binary-level coverage analysis.
In: Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pp. 1153–
1164 (2020)

11. Black, P.E., Black, P.E.: Juliet 1.3 test suite: changes from 1.2. US Department of
Commerce, National Institute of Standards and Technology (2018)

12. Böhme, M., Pham, V.T., Nguyen, M.D., Roychoudhury, A.: Directed greybox
fuzzing. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 2329–2344 (2017)

13. Cornelius Aschermann et al.: REDQUEEN: fuzzing with input-to-state correspon-
dence. In: NDSS, vol. 19, pp. 1–15 (2019)

14. Corporation, T.M.: Common vulnerabilities and exposures (CVE) (2020). https://
cve.mitre.org/

15. Dolan-Gavitt, B., et al.: LAVA: large-scale automated vulnerability addition. In:
2016 IEEE Symposium on Security and Privacy (SP). IEEE (2016)

https://books.google.com.cy/books?id=NTIrAAAAQBAJ
https://books.google.com.cy/books?id=NTIrAAAAQBAJ
https://cve.mitre.org/
https://cve.mitre.org/

wbFuzz: Grey-Box Fuzzing for Web Applications 171

16. Doupé, A., Cavedon, L., Kruegel, C., Vigna, G.: Enemy of the state: a
state-aware black-box web vulnerability scanner. In: 21st USENIX Security
Symposium (USENIX Security 12), Bellevue, WA, pp. 523–538. USENIX
Association, August 2012. https://www.usenix.org/conference/usenixsecurity12/
technical-sessions/presentation/doupe

17. Doupé, A., Cova, M., Vigna, G.: Why Johnny can’t pentest: an analysis of black-
box web vulnerability scanners. In: Kreibich, C., Jahnke, M. (eds.) DIMVA 2010.
LNCS, vol. 6201, pp. 111–131. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14215-4 7

18. Duchene, F., Rawat, S., Richier, J.L., Groz, R.: KameleonFuzz: evolutionary
fuzzing for black-box XSS detection. In: Proceedings of the 4th ACM Conference
on Data and Application Security and Privacy, CODASPY 2014, New York, NY,
USA, p. 3748. Association for Computing Machinery (2014). https://doi.org/10.
1145/2557547.2557550

19. Germán Méndez Bravoi, A.H.: esprima-python (2017). https://github.com/
Kronuz/esprima-python

20. Ghaleb, A., Pattabiraman, K.: How effective are smart contract analysis tools?
Evaluating smart contract static analysis tools using bug injection. arXiv preprint
arXiv:2005.11613 (2020)

21. Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing.
In: Proceedings of the 2005 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2005, New York, NY, USA, pp. 213–223.
Association for Computing Machinery (2005). https://doi.org/10.1145/1065010.
1065036

22. Godefroid, P., Levin, M.Y., Molnar, D.: SAGE: whitebox fuzzing for security test-
ing. Queue (2012)

23. Householder, A.D., Foote, J.M.: Probability-based parameter selection for black-
box fuzz testing, Technical report. Carnegie-Mellon Univ Pittsburgh PA Software
Engineering Inst. (2012)

24. James Graham, S.S.: html5lib-python (2007). https://github.com/html5lib/
html5lib-python

25. Jovanovic, N., Kruegel, C., Kirda, E.: Pixy: a static analysis tool for detecting web
application vulnerabilities. In: 2006 IEEE Symposium on Security and Privacy
(S&P 2006), pp. 6-pp. IEEE (2006)

26. Jovanovic, N., Kruegel, C., Kirda, E.: Precise alias analysis for static detection
of web application vulnerabilities. In: Proceedings of the 2006 Workshop on Pro-
gramming Languages and Analysis for Security, PLAS 2006, New York, NY, USA,
pp. 27–36. Association for Computing Machinery (2006). https://doi.org/10.1145/
1134744.1134751

27. Kieyzun, A., Guo, P.J., Jayaraman, K., Ernst, M.D.: Automatic creation of SQL
injection and cross-site scripting attacks. In: 2009 IEEE 31st International Confer-
ence on Software Engineering, pp. 199–209 (2009)

28. Klees, G., Ruef, A., Cooper, B., Wei, S., Hicks, M.: Evaluating fuzz testing. In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2018, New York, NY, USA, pp. 2123–2138. Association for
Computing Machinery (2018). https://doi.org/10.1145/3243734.3243804

29. Medeiros, I., Neves, N., Correia, M.: DEKANT: a static analysis tool that learns
to detect web application vulnerabilities. In: Proceedings of the 25th International
Symposium on Software Testing and Analysis, pp. 1–11 (2016)

https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/doupe
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/doupe
https://doi.org/10.1007/978-3-642-14215-4_7
https://doi.org/10.1007/978-3-642-14215-4_7
https://doi.org/10.1145/2557547.2557550
https://doi.org/10.1145/2557547.2557550
https://github.com/Kronuz/esprima-python
https://github.com/Kronuz/esprima-python
http://arxiv.org/abs/2005.11613
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1065010.1065036
https://github.com/html5lib/html5lib-python
https://github.com/html5lib/html5lib-python
https://doi.org/10.1145/1134744.1134751
https://doi.org/10.1145/1134744.1134751
https://doi.org/10.1145/3243734.3243804

172 O. van Rooij et al.

30. Medeiros, I., Neves, N.F., Correia, M.: Automatic detection and correction of web
application vulnerabilities using data mining to predict false positives. In: Pro-
ceedings of the 23rd International Conference on World Wide Web, WWW 2014,
pp. 63–74, New York, NY, USA. Association for Computing Machinery (2014).
https://doi.org/10.1145/2566486.2568024

31. Mendez, X.: Wfuzz - the web fuzzer (2011). https://github.com/xmendez/wfuzz
32. Mu, D., Cuevas, A., Yang, L., Hu, H., Xing, X., Mao, B., Wang, G.: Understanding

the reproducibility of crowd-reported security vulnerabilities. In: 27th USENIX
Security Symposium (USENIX Security 18), Baltimore, MD. pp. 919–936. USENIX
Association, August 2018. https://www.usenix.org/conference/usenixsecurity18/
presentation/mu

33. Nilson, G., Wills, K., Stuckman, J., Purtilo, J.: BugBox: a vulnerability corpus for
PHP web applications. In: 6th Workshop on Cyber Security Experimentation and
Test (CSET 13). USENIX Association, Washington, D.C., August 2013. https://
www.usenix.org/conference/cset13/workshop-program/presentation/nilson

34. Pewny, J., Holz, T.: EvilCoder: automated bug insertion. In: Proceedings of the
32nd Annual Conference on Computer Security Applications, ACSAC 2016, New
York, NY, USA, p. 214225. Association for Computing Machinery (2016). https://
doi.org/10.1145/2991079.2991103

35. Pham, V.T., Böhme, M., Santosa, A.E., Caciulescu, A.R., Roychoudhury, A.:
Smart greybox fuzzing. IEEE Trans. Softw. Eng. (2019)

36. Popov, N.: PHP parser. https://github.com/nikic/PHP-Parser
37. Rawat, S., Jain, V., Kumar, A., Cojocar, L., Giuffrida, C., Bos, H.: VUzzer:

application-aware evolutionary fuzzing. In: NDSS, vol. 17, pp. 1–14 (2017)
38. Rizzo, L., Landi, M.: Netmap: Memory mapped access to network devices. SIG-

COMM Comput. Commun. Rev. 41(4), 422–423 (2011). https://doi.org/10.1145/
2043164.2018500

39. Seal, S.M.: Optimizing web application fuzzing with genetic algorithms and lan-
guage Theory. Master’s thesis, Wake Forest University (2016)

40. Serebryany, K.: Libfuzzer-a library for coverage-guided fuzz testing (2015). https://
llvm.org/docs/LibFuzzer.html

41. Sparks, S., Embleton, S., Cunningham, R., Zou, C.: Automated vulnerability anal-
ysis: leveraging control flow for evolutionary input crafting. In: Twenty-Third
Annual Computer Security Applications Conference (ACSAC 2007), pp. 477–486
(2007)

42. Stephens, N., et al.: Driller: augmenting fuzzing through selective symbolic execu-
tion. In: NDSS, vol. 16, pp. 1–16 (2016)

43. Tikir, M.M., Hollingsworth, J.K.: Efficient instrumentation for code coverage test-
ing. ACM SIGSOFT Softw. Eng. Notes 27(4), 86–96 (2002)

44. Wang, Y., et al.: Not all coverage measurements are equal: fuzzing by coverage
accounting for input prioritization. In: NDSS (2020)

45. Woo, M., Cha, S.K., Gottlieb, S., Brumley, D.: Scheduling black-box mutational
fuzzing. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, pp. 511–522 (2013)

46. Zalewski, M.: Binary fuzzing strategies: what works, what doesn’t, August 2014.
https://lcamtuf.blogspot.com/2014/08/binary-fuzzing-strategies-what-works.
html

47. Zalewski, M.: More about AFL - AFL 2.53b documentation (2019). https://afl-1.
readthedocs.io/en/latest/about afl.html

https://doi.org/10.1145/2566486.2568024
https://github.com/xmendez/wfuzz
https://www.usenix.org/conference/usenixsecurity18/presentation/mu
https://www.usenix.org/conference/usenixsecurity18/presentation/mu
https://www.usenix.org/conference/cset13/workshop-program/presentation/nilson
https://www.usenix.org/conference/cset13/workshop-program/presentation/nilson
https://doi.org/10.1145/2991079.2991103
https://doi.org/10.1145/2991079.2991103
https://github.com/nikic/PHP-Parser
https://doi.org/10.1145/2043164.2018500
https://doi.org/10.1145/2043164.2018500
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://lcamtuf.blogspot.com/2014/08/binary-fuzzing-strategies-what-works.html
https://lcamtuf.blogspot.com/2014/08/binary-fuzzing-strategies-what-works.html
https://afl-1.readthedocs.io/en/latest/about_afl.html
https://afl-1.readthedocs.io/en/latest/about_afl.html

	webFuzz: Grey-Box Fuzzing for Web Applications
	1 Introduction
	1.1 Contributions

	2 webFuzz
	2.1 Instrumentation
	2.2 Fuzzing Analysis

	3 Bug Injection
	3.1 Analysis and Injection
	3.2 Bug Template

	4 Evaluation
	4.1 Code Coverage
	4.2 Throughput
	4.3 Vulnerability Detection

	5 Limitations
	6 Future Work
	7 Related Work
	8 Conclusion
	References

