
SecurePay: Strengthening Two-Factor Authentication for Arbitrary Transactions

Radhesh Krishnan Konoth
Vrije Universiteit Amsterdam

r.k.konoth@vu.nl

Björn Fischer
Vrije Universiteit Amsterdam

code@bjorn-fischer.de

Wan Fokkink
Vrije Universiteit Amsterdam

w.j.fokkink@vu.nl

Elias Athanasopoulos
University of Cyprus

eliasathan@cs.ucy.ac.cy

Kaveh Razavi
Vrije Universiteit Amsterdam

kaveh@cs.vu.nl

Herbert Bos
Vrije Universiteit Amsterdam

herbertb@cs.vu.nl

Abstract—Secure transactions on the Internet often rely on
two-factor authentication (2FA) using mobile phones. In most
existing schemes, the separation between the factors is weak
and a compromised phone may be enough to break 2FA.
In this paper, we identify the basic principles for securing
any transaction using mobile-based 2FA. In particular, we
argue that the computing system should not only provide
isolation between the two factors, but also the integrity of
the transaction, while involving the user in confirming the
authenticity of the transaction. We show for the first time
how these properties can be provided on commodity mobile
phones, securing 2FA-protected transactions even when the
operating system on the phone is fully compromised. We
explore the challenges in the design and implementation of
SecurePay, and evaluate the first formally-verified solution
that utilizes the ARM TrustZone technology to provide the
necessary integrity and authenticity guarantees for mobile-
based 2FA. For our evaluation, we integrated SecurePay in
ten existing apps, all of which required minimal changes and
less than 30 minutes of work. Moreover, if code modifications
are not an option, SecurePay can still be used as a secure
drop-in replacement for existing (insecure) SMS-based 2FA
solutions.

1. Introduction

Today’s Two-Factor Authentication (2FA) schemes for
secure online banking and payment services often use
smartphones for the second factor during initial authenti-
cation or subsequent transaction verification. As a result,
all current solutions are vulnerable to sophisticated attacks
and offer only weak security guarantees (see also Table
3). Specifically, attackers may compromise the phone
(including the kernel [1]–[3]) and break the second factor.
This is true for mobile-only banking services, but also for
solutions that use a separate device (typically, a PC) to
initiate a transaction.

Starting with the former, users increasingly rely ex-
clusively on mobile applications for using their bank
services, purchasing products, or booking trips [4], [5].
Using web-based payment services through a smartphone
brings convenience, as users can now access them anytime
and anywhere—even when access to a personal computer

is not possible. However, such convenience comes at a cost
to security guarantees offered by 2FA. Specifically, 2FA
works if and only if the two factors remain independent
and isolated, because it requires a compromise of both
factors to initiate fraudulent transactions—a difficult task
when devices are decoupled. This is not the case, however,
when a single device, such as a smartphone, serves both
factors, since the attacker needs to compromise only the
potentially vulnerable smartphone for breaking 2FA.

Worse, even PC-initiated transactions are not safe if
the attacker obtains root privileges on the mobile device.
In that case, attackers can replace or tamper with the
mobile apps, intercept messages and display misleading
information. Unfortunately, compromising smartphones is
a realistic threat especially given a compromised PC,
because even though the phone and PC are physically
separate, the devices are often not independent [6].

Surprisingly, despite ample proof that today’s phone-
based 2FA is weak in practice [6]–[8] and despite a range
of proposed solutions [9]–[14], this is not at all a solved
problem. In practice, the issues may be as basic as a
lack of separation between the two factors. However, even
if there is a strong separation, there are other, equally
fundamental issues. For instance, even research solutions
tend to focus on a limited threat model that excludes
fully compromised phones where an attacker obtains root
access, infects the kernel and/or the corresponding app.
Given that 2FA is often used in high-value interactions
(e.g., banking) and full system compromises are a com-
mon occurrence [15]–[19], such a limited threat model is
wholly insufficient.

Getting what appears to be a simple issue right is re-
markably hard and we will show that even the most state-
of-the-art solutions are lacking. When studied closely,
2FA exhibits many subtle issues in both the bootstrap
phase (generating and registering keys) and operational
phase (performing transaction). Given the many failed
attempts at secure solutions, verifying the correctness of
a solution in all possible corner cases is difficult for a
human analyst. Instead, we propose the use of automated
proofs to guarantee the security properties of our solution.

In terms of basic principles, we say that a transaction’s
authenticity is ensured if we prevent an attacker from
initiating a transaction on behalf of the user (or server)

without being noticed. Meanwhile, a transaction’s integrity
is preserved if an attacker is not able to modify the content
of the messages exchanged or displayed. Given these
basic principles, we argue that even if existing solutions
separate the two factors in 2FA, they tend to focus on
authentication and ignore integrity, even though secure
transaction requires both authenticity and integrity.

In this paper, we present SecurePay, a novel, prin-
cipled design to regain the strength of 2FA even in the
presence of fully compromised devices, while retaining
the convenience of mobile devices by securing a mini-
mal amount of core functionality for handling the sec-
ond factor in the secure world provided by the Trusted
Execution Environment (TEE). All other code runs in
the normal world. SecurePay applies both to mobile-only
transactions and to transactions initiated on a personal
computer with the mobile device serving as the second
factor only. Unlike previous work [9], [10], [12]–[14],
[20], [21], SecurePay builds on the solid foundation of
a minimalistic protocol for guaranteeing authenticity and
integrity for any transaction-based system, for which we
additionally provide a formal security proof.

The protocol is deliberately minimalistic to adhere to
Saltzer and Schroeder’s principles of Economy of Mech-
anism, Least Common Mechanism, Least Authority, and
Privilege Separation [22]. It is the first solution to include
just the minimum of generic 2FA functionality in the TEE
to cater to all banking, payment, and similar services—
allowing each to secure their transactions with verifiable
OTPs (one-time passcodes) in a 2FA solution.

In particular, SecurePay’s secure world provides three
essential functions. First, it is responsible for generating
SecurePay public-private key pairs. The private key never
leaves the secure world, while banking and similar ser-
vices will use the public key to encrypt the verification
OTPs for transactions. Second, it will decrypt the veri-
fication OTPs that it receives from banking and similar
services (via the mobile app in the normal world as an in-
termediary). Since the SecurePay private key never leaves
the TEE, it is the only entity capable of decrypting these
messages. Finally, it is capable of displaying the encrypted
messages to the user in a secure and unforgeable manner.
In other words, when users see messages displayed by
SecurePay’s trusted code, they can be certain that it was
generated by the trusted components and that it was not
tampered with. SecurePay ensures this through a software-
only solution based on a secret that is shared between the
user and the TEE.

These three functions allow any payment or similar
service to implement secure transactions. To back this
up, we incorporated SecurePay in ten different apps with
minimal effort. Moreover, on the client-side, SecurePay
may also serve as a drop-in replacement for existing (un-
safe) solutions such as SMS—without any code changes
whatsoever. To the best of our knowledge, SecurePay
is the first generic system that supports arbitrary trans-
action services without requiring additional hardware or
significant changes on the client side, while ensuring the
authenticity and integrity of the transactions initiated from
a PC or smartphone, even in the case of fully compromised
devices. We designed SecurePay as an effective and practi-
cal solution, utilizing TEE features available in all modern
devices.

Contributions We make the following contributions:

1) We analyze current 2FA-based techniques for
protecting Internet banking, show why they are
weak, and identify the key functionality that we
need to isolate.

2) We present SecurePay, a generic 2FA design ca-
pable of guaranteeing the integrity and authen-
ticity of any transaction (financial or otherwise)
initiated from a mobile app or PC even in the
face of a complete system compromise—where
current solutions target only authenticity for more
limited threat models.

3) We implemented and evaluated SecurePay on an
actual smartphone1.

4) We present a secret-based trusted-UI without the
requirement of additional hardware.

5) We provide a formal proof of SecurePay’s secu-
rity guarantees.

2. Background

In this section, we discuss the necessary background
information for both our threat model and the SecurePay
design.

2.1. Mobile transactions and 2FA

Two-factor authentication (2FA) is a well-established
mechanism for hardening authentication schemes. Typi-
cal designs for web-based transactions require users to
demonstrate not only their knowledge of some secret
credentials (such as a password), but also their possession
of some artifact (such as mobile phone). Since mobile
phones are easily the most popular choice for a large class
of 2FA implementations, we limit ourselves to phones
only. In virtually all such schemes, after a user submits
the credentials to a server, the server sends an OTP to
the user’s phone, often in the form of a short sequence of
digits. The assumption is that the ability to also submit
the OTP proves possession of that phone. In principle,
2FA secures clients against the misuse of passwords that
may have leaked [23], [24]. An adversary who steals a
user’s password and/or compromises the user’s personal
computer is still unable to impersonate the victim, as long
as the service can transmit the second factor safely to the
smartphone, that is assumed to be non-compromised.

Besides initial authentication, 2FA also commonly
protects sensitive transactions, such as bank transfers. In
particular, e-banking and e-commerce services enforce a
2FA procedure whenever the already authenticated user
performs a particular action, such as transferring money
from one bank account to another, or verifying an on-line
purchase. For instance, the Bank of America’s SafePass
offers security based on 2FA. Without it, customers can
transfer only small amounts of money, while for higher-
value transfers, the bank sends a 6-digit OTP as an SMS
text message to the user’s phone. In this context, 2FA no

1. While this sounds simple enough, TEEs in phones are normally
not accessible to researchers. It was only possible thanks to a vendor’s
support.

longer functions as an enhanced user authentication mech-
anism, but rather as additional procedure to verify the au-
thenticity of the transaction. There is a subtle but important
difference between these two uses of 2FA. Specifically, for
on-line transactions just verifying the authenticity of the
transaction is not enough, and integrity must be preserved
also, for instance to prevent strong and stealthy attackers
from modifying the user-issued transaction without the
user’s knowledge.

Unfortunately, in the absence of strong guarantees
of separation between the factors, and authenticity and
integrity of the transaction, an attacker who compromises
the mobile can also intercept and/or tamper with the OTP.
Worse, all 2FA solutions for mobile devices today are
vulnerable to strong attackers capable of compromising
the system completely by obtaining root access, infecting
the kernel, or replacing the banking app with a malicious
repackaged version. Such strong attackers may be able
to initiate a transaction without the user’s knowledge,
breaking the authenticity of the transaction, or hijack the
user’s transaction by displaying misleading information on
the display, breaking the integrity of the transaction.

2.2. Separating the factors

Fortunately, modern devices offer strong isolation
primitives in the form of a TEE, such as ARM’s Trust-
Zone. As we shall see, if carefully used, they can restore
the isolation between the factors in a 2FA scheme. A
TEE offers a hardware-supported secure environment that
protects both code and data from all other code—with
respect to authenticity and integrity. Even the kernel of
the operating system in the normal world is unable to
view or tamper with anything in the secure world.

However, even with a TEE, facilitating a secure trans-
action using 2FA in the face of a strong attacker is
deceptively difficult, and all existing solutions show weak-
nesses in important cases. For instance, in Section 6.6
we will see that solutions such as the TrustPay design
are vulnerable to man-in-the-mobile attacks even though
it uses a TEE, because isolation is only the first step;
integrity and authenticity of the transaction are equally
important. Similarly, we will also discuss the weaknesses
of VButton [25] design that result from the lack of a
Trusted UI indicator.

Moreover, the naive solution of simply allowing each
and every bank, payment service, or transaction applica-
tion to run custom code in the TEE is undesirable, as
doing so violates the Principle of Least Authority as well
as that of Privilege Separation [22], and increases both
the number of bugs and the attack surface in the TEE
(jeopardizing the security of the entire system). Instead,
we should keep the amount of code running in the TEE
to a minimum and offer the least amount of functionality
possible to cater to all possible 2FA applications (adhering
to the Principle of Least Common Mechanism).

Besides TEEs, it is also possible to separate the factors
by an additional (external) hardware device. For instance,
the only solutions with a similar threat model to ours,
such as ZTIC [9], require such additional hardware in
the form of a USB stick. These devices need constant
updates to support new service providers. Moreover, ZTIC
protects only PC-initiated transactions and previous work

has shown that extending it to mobile-only scenarios is
difficult [26].

2.3. Trusted Execution Environment (TEE)

A TEE is a secure execution environment that runs
in parallel with the operating system of a smartphone or
similar device. Several hardware vendors have introduced
different hardware-assisted TEEs: Intel Identity Protection
Technology, Intel Software Guard eXtension, ARM Trust-
Zone etc. [27], [28]; however, in this paper we focus on
TrustZone, as mobile devices tend to use ARM processors.
Most such devices support a TrustZone-based TEE [29],
which they implement using a set of proprietary methods.
TEEs manage trusted applications which provide security
services to untrusted applications running on the com-
modity operating system of the mobile device. For this
purpose, the GlobalPlatform (GP) consortium is develop-
ing a set of standards for TEEs [30]–[32]. It includes APIs
for the creation of trusted applications [33], as well as for
interacting with other trusted applications securely [34].
Each trusted application should be able to run indepen-
dently and should be prevented from accessing additional
resources of other (trusted) applications. Nowadays, TEE
developers implement TEEs in compliance with the GP
API specifications.

ARM TrustZone [35]–[37] provides a TEE by en-
abling the system to run in two execution domains in
parallel: the normal and the secure world (Figure 6). The
current state of the system is determined by the value
of the Non Secure (NS) bit of the secure configuration
register. The secure domain is privileged to access all
hardware resources like CPU registers, memory and pe-
ripherals, while the normal world is constrained. There
is an additional CPU mode called monitor, which serves
as a gatekeeper between the two domains. This monitor
mode is also privileged, regardless of the status of the NS
bit. Likewise, the memory address spaces is divided into
regions, which are marked as secure or non-secure using
the TrustZone Address Space Controller. Finally, periph-
erals can be marked as accessible to the secure world by
programming the TrustZone Protection controller.

To switch from the normal to the secure world, the
system must initially switch to monitor mode by executing
a Secure Monitor Call (SMC). Essentially, this allows
the monitor mode to verify whether switching from one
world to the other should be permitted. If the request is
determined valid, it modifies the NS bit accordingly and
completes the world switch.

3. Threat model and assumptions

We assume a strong and stealthy attacker, who has
obtained the user’s credentials (e.g., via a password leak,
or a compromised device), and fully compromised the
user’s smartphone. In other words, all the code in the
normal world, including the operating system kernel,
should be considered malicious. The attacker seeks to
perform malicious transactions on behalf of the victim.
For example, the attacker may replace the banking app
in the user’s device with a malicious one. While strong,
this is a realistic threat model on today’s smartphones and
probably should be the threat model for highly sensitive

applications such as payment systems. Many exploits exist
that allow attackers to run malicious apps on a user’s
phone in a stealthy manner [6], [38], [39] and escalate
the privilege to root [16], [18], [19]. As we discuss in
Section 8, previous work fails to protect against such
strong attacker models.

We also assume that users have secured their accounts
with 2FA, so that the attacker must bypass 2FA restrictions
(stealthily) for every malicious transaction. As the attack-
ers have compromised the mobile device, they have access
not just to the user’s credentials, but also to the second
factor OTP which we assume the payment service to
deliver only to the compromised device. As attackers may
have compromised the phone entirely, denial-of-service
attacks are not relevant. Hardware-level attacks such as
bus snooping [40], [41] and cold boot [42], [43] are out
of scope as they require physical access to the phone.

Bootstrap We assume that TEE provides a secure boot
process to ensure the integrity of the executables running
in the secure world. In fact all modern devices achieve the
secure-boot by implementing a chain of trust [44], [45].
On a device-reset event, the boot code from ROM verifies
and loads the secure bootloader. The secure bootloader
initializes TEE and loads the non-secure bootloader – after
verifying its integrity. Finally, the non-secure bootloader
verifies and loads the normal world OS.

4. Design

In this section, we first describe the requirements for
a secure and compatible mobile-based 2FA before we
explain SecurePay’s design.

4.1. Requirements for a secure and compatible
design

Transaction-based systems use traditional phone-based
2FA solutions to guarantee the authenticity of a transaction
and the 2FA works only as long as one of the factors is
not completely compromised. The main weakness of such
2FA-based solutions under our threat model is that the two
factors are not sufficiently isolated and as a result, these
solutions cannot guarantee both the authenticity and the
integrity of the transaction.

As an example, consider Alice, who uses e-banking
(using either her mobile phone or PC) to transfer some
money to Bob. When Alice is about to make the money
transfer, in the ideal case her bank sends an additional
short code (generally referred to as a One-Time Pass-
word or OTP) with the transaction summary to Alice’s
phone to verify the requested transaction. However, if
the phone is compromised, the attacker can (i) silently
initiate a transaction, read the OTP and send it to the
bank to confirm a fraudulent transaction breaking the
authenticity of the transaction, or (ii) display a falsified
transaction summary to the user (that matches the user’s
expectation) and trick her to confirm a different, fraudulent
transaction—breaking the integrity of the transaction.

Thus, we identify the following key requirements that
must be satisfied for any design for secure 2FA:

1) Isolation: we must ensure the separation of the
domains manipulating the two factors in 2FA.

2) Integrity: attackers should not be able to tamper
with (or read and display in modified form) a
transaction’s OTP messages as sent by the pay-
ment service.

3) Authenticity: users must be looped in to enforce
the authenticity of the transaction.

4) Secure bootstrapping: users must be able to se-
curely register the device to the service they wish
to engage in 2FA authentication.

Besides these strict requirements, we increase both
security and usefulness of our solution by three additional
constraints:

5) Least common mechanism: the TEE should sup-
port the minimum functionality needed to support
most applications and no more [22].

6) Provable security: given the pivotal role of 2FA
for many highly sensitive services, we demand a
formal proof of our design’s security guarantees.

7) Compatibility: to facilitate adoption, we demand
that it should work with existing services.

4.2. SecurePay

We propose SecurePay, our design of a secure and
compatible 2FA solution that satisfies all of the afore-
mentioned requirements. To satisfy (1), SecurePay uses
TEE, such as ARM’s TrustZone for creating a hardware-
enforced isolated environment. To satisfy (2), SecurePay
uses off-the-shelf public-key cryptography and the TEE
for protecting the integrity of the transaction. To satisfy
(3), SecurePay relies on a software-based secure display
implementation, the output of which can only be produced
by legitimate code which is recognizable as such by
the user. To satisfy (4), SecurePay provides a tamper-
resistant mechanism enforced by the TEE that allows users
to securely register with a service provider that allows
authentication through 2FA.

Furthermore, to satisfy our softer requirements, Se-
curePay provides a minimal TCB that runs in the TEE
(trusted app) and we have formally verified that its pro-
tocol provides authenticity and integrity for transactions.
To provide compatibility, SecurePay is capable of utilizing
SMS as the communication channel between the user and
service provider, and provides a normal-world component,
the SecurePay app, to communicate the received encrypted
SMS to SecurePay’s trusted app (TA) in the TEE. Thus
the service providers do not have to modify their mobile
app to utilize SecurePay. Upon receiving the encrypted
OTP and transaction summary, the user can invoke the
SecurePay app to display the decrypted message on the
secure screen (fully controlled by the TEE).

To further explore the compatibility aspects, Secure-
Pay provides two modes of operation, one that is a fully
transparent drop-in replacement for existing SMS-based
schemes, and another which requires a small modification
to the service providers’ apps but offers full integration to
simplify the user interaction.

For the drop-in replacement mode, Figure 1 shows
the workflow as a sequence of steps. First, the user
initiates a transaction from an app on the phone (or in
the browser running on her PC as shown in Figure 4).
The service provider receives this request and responds

Figure 1: The work-flow of SecurePay-based transactions in
transparent (drop-in replacement) mode.

Figure 2: The work-flow for full integration of SecurePay (Se-
curePay integrated mode).

with an SMS containing an encrypted message (using
the public key of the user’s SecurePay) that includes
the transaction summary and an OTP. The SecurePay’s
secure app receives this SMS and launches the trusted
UI to display the transaction summary and the OTP to
the user. Once the user verifies the authenticity of the
transaction, she can switch to the service provider’s app
and enter the OTP, exactly like she would do with existing
SMS-based OTPs. This OTP is then forwarded to the
service provider and if it matches the one sent by the
provider earlier, the transaction completes successfully.
This version of SecurePay does not require any modi-
fication on the service provider’s app on the phone, but it
does require the user to memorize (or note down) the OTP
and enter it in the service provider’s mobile app (or web
interface) to confirm the transaction. Fortunately, studies
in psychology and HCI [46] have shown that humans can
remember without difficulty on average 7 items in their
short memory. Table 1 shows that most services are using
fewer digits (5 to 6) as OTP.

SecurePay can lift this requirement and hide the OTP
entirely with a small modification of the service provider’s
app to fully integrate SecurePay. Figure 2 shows the
necessary steps for confirming a transaction in this version
of SecurePay. The main difference is that the service
provider’s app directly communicates with the SecurePay
trusted app using the SecurePay library (discussed in Sec-
tion 5). Similar to the previous version, the user initiates
a transaction using the service provider’s app. The service
provider then sends an SMS with an encrypted summary
and an OTP to the phone. Given that we do not want
to increase SecurePay’s code base, we let the provider’s
app (instead of SecurePay) receive this information (via
SMS or Internet) and forward it to the SecurePay trusted
app, which decrypts the message and shows the user the

TABLE 1: Type of OTP used by different services

Service Provider Type of OTP Length of OTP

Google digits 6
ING Bank digits 6

Bitfinex digits 5
Bank of America digits 6

Citibank digits 6
Deutsche Bank digits 6

Dhanlaxmi Bank digits 6
Axis Bank digits 6

Alpha Bank digits 6
TransferWise digits 6

Figure 3: Full integration of SecurePay: the user simply presses
accept or cancel on the trusted screen (SecurePay
integrated mode).

transaction summary (but no OTP). The only thing the
user needs to do is accept or reject this transaction after
looking at the summary (see Figure 3). The SecurePay
trusted app then transparently signs the OTP and sends
it to the service provider’s app, which in turn forwards
the signed OTP to the service provider. Upon receiving
the signed OTP, the provider completes the transaction
if the OTP matches the one sent earlier. This version of
SecurePay provides more convenience for the user, but
requires a small modification of the service provider’s app
(around 20 lines of code on average and little effort, as
we will show in our evaluation).

Next, we discuss implementation details of SecurePay
before analyzing its security guarantees and evaluating its
performance.

5. Implementation

The architecture of SecurePay is depicted in Figure 6.
In our prototype on Android 8, the mobile operating
system runs in the normal world and manages all mobile
apps, while Kinibi, Trustonic’s TEE, runs in the secure
world and manages all trusted apps. We tested a full
implementation of SecurePay on a Samsung Galaxy S8
mobile device. In this section, we first discuss the imple-
mentation of SecurePay’s components, then introduce its

Figure 4: Shows how a SecurePay-enabled user issues trans-
actions securely through a PC even if both PC and
associated mobile device are infected by malicious
code.

secure bootstrapping process, and finally, explain in detail
how a user can initiate and complete a transaction securely
even if all (normal-world) software on the user’s devices
(both PC and mobile) is fully compromised.

5.1. SecurePay components

SecurePay contains two main components: the Se-
curePay trusted app (TA) and the SecurePay Android
library that enables any mobile app to communicate to
the SecurePay TA. The SecurePay TA runs inside the
secure world, beyond the reach of normal apps running
in the normal world. The mobile app, running in the
normal world, can access the TA only through the APIs
implemented by SecurePay Android library.

The SecurePay Android library is an Android
Archive (AAR) file which can be linked to any Android
app. It implements the API that allows apps in the nor-
mal world to access the functionalities provided by the
SecurePay TA and comprises 1,546 LoC. Internally, the
library uses the Global Platform (GP) TEE client API to
implement these APIs.

For the drop-in replacement mode, we built the Se-
curePay mobile app, the normal world component of
the SecurePay (Figure 1), using the SecurePay Android
library. The end user can use the SecurePay mobile app to
(i) generate the key pair, (ii) retrieve the public key, and
(iii) decrypt and display the SMS on the secure screen.
Once the secure screen is visible, the user is sure that the
SecurePay TA is in control and the content of the screen
can be trusted. How SecurePay implements its secure
screen will be explained later in the section.

In SecurePay integrated mode, the SecurePay TA
transparently sends the decrypted OTP back to the pay-
ment app (Figures 2 and 3), once the user verifies and
accepts the transaction. This can be implemented using the
SecurePay Android library, but in this case, the service
provider has to modify its app to receive the encrypted
transaction summary and OTP from the server, and to
invoke the SecurePay TA to decrypt and display it on
the secure screen. In practice, doing so took less than 30
minutes in all ten apps we tried (Section 6). Then, the
user can verify the transaction details and press accept
or cancel on the secure screen (Figures 3 and 2). If the
user accepts the transaction, the SecurePay TA signs the
OTP with the private key and sends it back to the service
provider. If not, the SecurePay TA terminates the session.

Note that the signing of the OTP by the SecurePay TA
serves to prevent the attacker from trying to guess or
bruteforcing the OTP reply to the server.

Note that in both modes, the OTP only leaves the
secure world if the user accepts the transaction by either
clicking on the button on the secure screen or entering
the OTP in the normal world app. This is how SecurePay
ensures the authenticity of the transaction, while the in-
tegrity of the transaction is ensured using public-private
cryptography, a secure screen and secure bootstrapping
(which we discuss in the next subsection).

The SecurePay trusted app The trusted core of Se-
curePay comprises 4,565 LoC running in the Kinibi secure
world—a GP-compliant TEE which implements secure
storage APIs and many common cryptographic APIs. As a
consequence, SecurePay should work out of the box with
any GP-compliant TEE.

Specifically, the TEE Internal API defined by the
GlobalPlatform Association and implemented by Kinibi
supports most common cryptographic functions such as
message digests, symmetric ciphers, message authentica-
tion codes (MAC), authenticated encryption, asymmetric
operations (encryption/decryption or signing/verifying),
key derivation, and random data generation. On top of
these primitives, Kinibi implements a powerful secure
storage layer which guarantees the confidentiality and
integrity of sensitive general-purpose data, such as key
material, as well as the atomicity of all operations on
secure storage.

Using these APIs, the SecurePay TA supports three
minimal functions. First, it can generate an asymmetric
key pair of which the private key never leaves the TEE.
Second, it can display the QR code of the public key
on the secure screen (Figure 5). Third, it can decrypt
messages encrypted with the public key when requested
to do so from an (unprivileged) user app in the normal
world and securely display it to the user on a secure
display—with guaranteed authenticity and integrity, even
if the attacker has administrator access to the phone. We
now explain these functions in more detail.

Generate keys(): The mobile OS automatically
invokes this function at first boot (or full device reset).
When normal-world code invokes the function, the Se-
curePay TA first checks whether a key pair already exists
in its Kinibi-enforced GP-compliant secure storage and
only if the pair does not exist, will it generate a new
RSA key pair (using Kinibi’s cryptographic API). Of this
keypair, it returns only the public key to the normal world.

Display public key(): When invoked, the Se-
curePay TA checks whether a key pair already exists in
its secure storage. If it exists, it extracts the public key
component and displays its QR code on the secure screen
(Figure 5).

Display summary(): When invoked, the SecurePay
TA decrypts a message using the private key stored in
secure storage and displays it on the secure screen. It is
used to handle the OTP from the transaction service (such
as a bank). Recall that after the user initiated a transaction
and the mobile app has sent the transaction details to,
say, her bank, the banking service encrypts the transaction
details and a freshly generated OTP using the user’s public
key and sends it back to the mobile device. Now, the
SecurePay mobile app invokes Display summary() to

display the transaction summary and OTP on the secure
screen. The API takes a boolean input parameter which
decides whether the trusted app should return the signed
OTP to the normal world if the user clicks on the accept
button (Figure 3). To minimize confusion for the user,
if the parameter is set to false, the SecurePay TA only
displays a return button instead of accept and cancel.

Secure screen The main challenge in realizing a
trusted user interface (TUI/secure screen/trusted screen)
is ensuring that users can tell if they are actually dealing
with a trusted application, and not with a user interface
injected and controlled by a malicious app [27]. Since a
switch from normal-world to secure world code is done
via a GP TEE client API which internally calls the SMC
instruction, an attacker who has full control over the
victim’s device can easily bypass the switch and project
an attacker-controlled user interface instead—tricking the
user into believing that the active interface is now the
trusted one.

Existing approaches are not suitable for SecurePay
and typically require additional hardware. For instance,
to realize a TUI, TrustOTP (TOTP) [13] shares a single
screen between the normal and the secure world, but with
two different frame buffers, of which one is accessible
only from the secure world. Moreover, to make sure that
the attacker cannot bypass world switching, TrustOTP
uses a separate non-maskable interrupt, triggered by a
special button on the phone for passing control to the
secure world. Unfortunately, such solutions do not work
for SecurePay. Since the GP compliant TEE is expected
to run multiple trusted apps in the secure world, a single
interrupt is insufficient, while adding separate hardware
interrupts for each of them is impractical. In addition and
equally important in practice, current COTS phones lack
such special-purpose buttons to begin with.

As an alternative, one could also use a single piece
of additional hardware, such as a specialized LED, as
an indicator of whether the display is controlled by the
normal or the secure world [47]. By configuring a GPIO
port to be only accessible from the secure world and
connecting to a special LED on the phone, the user knows
that if the LED is on, the secure world is in control of the
display. Again, as smartphones today do not have such a
LED-based indicator, this is not a practical solution for
our purposes either.

Hence, SecurePay implements a software-only solu-
tion whereby the trusted code authenticates its output to
the display by means of an easily recognizable shared
secret. The example secret is an image or secret text that
is known only to the user and the SecurePay TA. Examples
are shown in Figures 5 and 3, where the simple logo
in the top left corner serves as a simple example of a
secret image and “S3cr3t” as an example of the secret
text (the “Trusted UI Indicator”) in the figure. The secrets
are explicitly loaded into the TEE at first boot (or full
system reset), when the device was assumed to be in a
pristine state and they are stored in the Kinibi’s secure
storage layer which guarantees both confidentiality and
integrity of the data. Since only the trusted code knows
the secrets, the user knows that if the device displays the
secret image and/or the text on screen, the trusted code
must be in control of the screen and the frame buffer,
and no other code can access it. Even the Android OS

Figure 5: Registering with the bank by showing the QR code of
public key on the trusted screen

literally does not have any access to the hardware or the
frame buffer during the period that the secure screen (TUI)
is active — meaning that malware cannot capture the data
displayed on the screen or simulate touches, even if the
phone is rooted.

5.2. SecurePay registration and bootstrap

Enabling SecurePay with an actual service involves
communicating the public key to the service. In case the
user owns several devices, all devices must register with
the SecurePay-protected service. Registration takes place
when the user installs the client part (i.e., the mobile
application) on the device. For successful registration, the
user must communicate the public key securely to the
service—in terms of integrity, not necessarily confiden-
tiality.

Since we assume that the mobile device may be al-
ready compromised at registration time, we must prevent
attackers from registering their own public keys with
a user’s account, either by initiating a binding request
themselves, or by replacing the public key with their own
when the user’s binding request is in transit. Like all
secure transaction systems, SecurePay requires a secure
bootstrap procedure to handle this. Various solutions are
possible, ranging from custom hardware extensions to in-
person registration at a physical office (whereby a public
key displayed on the phones secure display is manually
bound to the account number).

Initial registration in our design simply assumes the
presence of a secure terminal—for instance, at an ATM
machine or a physical branch office. After installing the
SecurePay mobile app, the user can invoke the SecurePay
TA to display the QR code of the public key on the trusted
screen as shown in the figure 5. Note that the user has
to make sure the display is currently controlled by the
trusted app by verifying the personalized image or secret
text before sharing it to the bank. Finally, the bank simply
scans the QR code to retrieve the public key safely from
the user’s device.

SecurePay TA

SecurePay
mobile app

Figure 6: Multiple apps can use the same SecurePay TA.

Note that the registration for SecurePay is comparable
to or simpler than that of many other payment services.
For example, to enable e-banking, many banks require
physical presence at a branch office and/or hardware to-
kens. More importantly, the threat model for SecurePay
is considerably stronger than that of existing systems—
protecting the user against attacks launched from a fully
compromised device, where the attacker controls even the
device’s operating system kernel.

6. Evaluation

6.1. Security of mobile transactions

An attacker can get privileged access on a victim’s
device in two ways: exploit a software/hardware vulnera-
bility or trick the user to install a repackaged version of
a mobile app. Many reports [48], [49] show that cyber
criminals are often successful in tricking the users into
installing a repackaged version of financial apps using
social engineering techniques. For the purposes of this
paper, we exploited a hardware vulnerability of the Nexus
5 phone [18] to get root access and replace the official
financial app with a repackaged version. The latter hi-
jacks transactions and sends money to attacker-controlled
accounts. Once a transaction is completed, the malicious
app displays a fake transaction summary to the user on
the infected device instead of the details of what actually
happened. Countering such attacks, that can take place
when a bank transaction is carried out solely by using a
compromised device, is extremely hard.

SecurePay can help the user (victim) stop any hijacked
transaction from even happening in the first place. With
SecurePay enabled, once the e-banking service receives
a user’s transaction, it encrypts the transaction details
and a freshly generated OTP with the user’s public key
stored at the bank’s server and sends back the result
to the financial app. The repackaged version of the app
receives the encrypted message, but, unless the private
key has leaked from the trusted storage, decrypting it
is not possible. The only way to decrypt the message
is to relay it to SecurePay, which, being in the secure
world, controls the private key. However, once SecurePay
decrypts the message, it forwards the plain text to the
secure display. The user is able to inspect the modified
transaction and signal an abort message to the e-banking
service by entering an invalid OTP. Note that the bank
needs to generate a new OTP for every transaction request
it receives in order to prevent the attacker from reusing
an old OTP.

6.2. Security of non-mobile transactions

Many well-known banking trojan horses like
Zeus [50], Dyre [51], and Dridex [52] use malicious
plugins or API hooking techniques to modify the HTTP
responses received by a browser or to silently perform
illegal operations on behalf of the user [53]. This is
commonly known as a Man-in-the-Browser (MitB)
attack [54].

Let us assume that the user is making a financial
transaction from an infected (non-mobile) host, such as
a PC, but SecurePay powers the user’s mobile device
and financial application. For example, Alice initiates a
transaction to transfer $100 to Bob using her browser
running on her PC. An attacker, through a MitB attack,
modifies the transaction to $1,000 to be transferred to
an attacker-controlled account. Once the e-banking ser-
vice receives the transaction, it encrypts the transaction
summary and a freshly computed OTP, and sends the
encrypted message back to Alice’s smartphone, using a
push notification or SMS. Since Alice runs the SecurePay
mobile app, the message is handled by the SecurePay TA
and the transaction summary is displayed, along with the
OTP, on the trusted display. Alice reviews the transaction,
and since it has been modified, aborts the transaction.

We stress that in this scenario, the attacker may well
have full control over the user’s mobile device and even
her PC and web account credentials. However, in spite of
this, thanks to SecurePay, it is still not possible for any
hijacked transaction to actually take place.

6.3. Verification using TAMARIN

We formally verified SecurePay’s authenticity and in-
tegrity security properties using TAMARIN v1.4.1 (see
Appendix A). The TAMARIN [55] prover supports the
automated, unbounded, symbolic analysis of security pro-
tocols. It features expressive languages for specifying
protocols, adversary models, and properties, and efficient
support for deduction and equational reasoning. A security
protocol is specified through multi-set rewrite rules and
facts. A rewrite rule takes a number of facts and rewrites
them to other facts. Initially, the state contains no facts and
only rewrite rules that do not require input facts can be
applied. An exception is the generation of a fresh nonce,
which is always possible.

With regards to SecurePay we have two such initiator
rules. The first rule models the initiation of a binding
request for a new device. In this case, the fresh nonce
is the private key of the device to be added. Since this
rule can always be applied, the proof is performed for
infinitely many devices. The second rule is the initiation of
a new transaction, which can also be performed infinitely
many times. The nonce is the transaction data, which is
the initial input from the user to perform a transaction.
This also means that the models hold for infinitely many
transactions.

There are two flavors of facts. Persistent facts remain
part of the state after they are consumed by a rewrite
rule, hence they can never be removed. Linear facts are
removed from the state when they are consumed by a
rewrite rule. The latter may be used to model multiple

steps of a role. Each rewrite step produces a linear fact that
is consumed by the successor step. We give an example:

rule step 1 :
[Fr (˜nonce)]

==>
[Step1Completed () , Out (˜nonce)]

rule step 2 :
[Step1Completed () , In (response)]

==>
[Step2Completed ()]

The first rewrite rule generates a fresh nonce and sends
it into the network using the fact Out (˜nonce). The
second step waits for a response from the network
using the fact In (response). The second rewrite
rule is only ready to be performed after the first
rewrite rule has been performed (modelled using
the fact Step1Completed). Furthermore, persistent
facts can be used to model the completion of a
SecurePay binding request. Upon completion of
the binding request the bank will create the fact
!PublicKeyForAccount (account, publicKey).
This fact can be consumed (many times) to encrypt
messages sent from the bank to the device holder. The
usage of persistent facts in the model allows that the
complete SecurePay protocol (binding requests and
transactions) can be verified in a single model.

The adversary model employed by TAMARIN is the
well-known Dolev-Yao model [56]. The intruder learns ev-
ery message which is sent over the network, can change its
content and may generate new messages from the knowl-
edge obtained so far. In terms of TAMARIN this means
that an intruder observes all In-facts and can produce
an arbitrary number of Out-facts. All other facts are not
observable by the intruder. Perfect encryption is assumed,
meaning that the intruder does not learn anything from an
encrypted message for which she does not own the key.
Since in SecurePay the normal world is compromised, all
messages to or from the normal world are compromised.
We model this fact by exposing all messages that are
traversing through the normal world to the network, i.e.
the intruder.

We identify the following entities, which are involved
in the protocol: i) the human performs binding requests
and transactions, ii) the trusted app generates key pairs
and displays messages on the secure screen, and iii) the
bank processes binding requests and verifies transactions.

Our TAMARIN specification of SecurePay separates
the multi-set rewrite rules of the trusted zone, the bank
and the human entity by prefixing all rule names. An
overview of all rewrite rules and their intended relations
are depicted in Figure 7 (some facts are omitted for
readability). Rewrite rules that do not consume any fact
can be executed arbitrarily many times, hence we consider
infinitely many devices and accounts. Similarly, because
the fact HumanInitiatesTransaction only consumes
persistent facts, it can be executed arbitrarily many times
if we witness a single HumanOpensAccount. It follows
that we also consider arbitrarily many transactions. Note
that the rewrite rules may not appear in the same order in
every trace. Because the intruder can create an arbitrary
number of messages from previously obtained knowledge,

NewDevice Human
OpensAccount

HumanInitiates
RegistrationRequest

BankCompletes
RegistrationRequest

HumanInitiatesTransaction

BankReceivesTransaction

TrustedZoneDisplaySummary

HumanConfirmsTransaction

BankCompletesTransaction

Figure 7: A visualization of the Tamarin specification of Se-
curePay. Boxes denote rewrite rules. Arrows between
boxes denote facts, pointing from producer to con-
sumer. Double lines denote persistent facts. Yellow
arrows depict messages sent through the network or
the normal world, i.e. interceptable by the intruder.
Black lines are other linear facts, not observable by
the intruder. Dashed arrows depict facts that denote a
successor step within a role.

we consider a multitude of rule interleavings. We verified
the security properties for all possible cases.

Unlike many security protocols, SecurePay has a con-
trol flow. Namely, for each transaction, the user decides to
input the correct or a wrong OTP and the bank decides to
accept or reject a transaction based on the received OTP.
We model this behavior by restricting the application of
rewrite rules using equality reasoning. An example for
the above is BankCompletesTransaction. This rule can
only be executed if the OTP contained in the network
message matches the one that is generated by the fact
BankReceivesTransaction.

TAMARIN imposes the security properties on a global
view by inspecting the trace. Additional to input and out-
put facts, rewrite rules can specify action facts. Whenever
a rule is applied, the action facts are appended to the
initially empty trace. The trace is used to verify security
properties, which are called lemmas in TAMARIN. Lem-
mas are expressed using first-order logic formulas which
must hold in all traces that are reachable from the initial
configuration. To prove authentication and integrity, we
specify lemma 1.

∀t.T ransactionCompleted(t) →
(∃.HonestTransactionInitiated(t))

(1)

Both HonestTransactionInitiated and
TransactionCompleted are facts and contain
the transaction details including the account owner.
Intuitively, the lemma means that a transaction must only
complete if it was initiated by the account owner.

TAMARIN automatically verifies security properties,
expressed in first-order logic, for all possible execution
traces, in a backward fashion. Hereby it employs con-
straint solving. It is either concluded that a given property
holds for all execution traces that are possible from the
initial protocol configuration, or a counter-example is
produced. Since this verification problem is undecidable,
inevitably such a backward run may not terminate. To
achieve termination, the user may formulate and, with the

help of TAMARIN, prove so-called source lemmas that
construct the possible sources for a fact. Source lemmas
are solved using induction on the trace length.

To achieve termination of SecurePay’s verification,
one source lemma was needed. The lemma shows all
possible sources for the encrypted message that is de-
crypted by the trusted zone. For all messages concerning a
transaction, either the message comes from the bank or the
intruder must know the OTP (that is contained in it). Using
induction, TAMARIN can prove this lemma automatically.

To prove that replay attacks are not possible, we
specify lemma 2.

∀t, t′, i, j.T ransactionCompleted(t)@i∧
TransactionCompleted(t′)@j ∧ i 6= j

→
(∃k, l.HonestTransactionInitiated(t)@k∧

HonestTransactionInitiated(t′)@l ∧ k 6= l)

(2)

The variables i, j, k, l are time variables of the logical
clock that is part of Tamarin. They uniquely identify
the respective facts, that are proceeding the @ symbol.
By definition, two facts cannot occur at the same time.
Using inequality, we assume two arbitrary but distinct
transactions and verify that the account owner(s) must
have initiated two distinct transactions. We make no as-
sumptions about t and t′, therefore, we also verify replay
attacks accross different accounts.

Using TAMARIN, we verified authentication for Se-
curePay: every transaction must be initiated by the human
that owns the account. Furthermore, we verified integrity:
a transaction can only complete if both the human and the
bank agree on the transaction details. The proof holds for
an unlimited number of devices and transactions. Addi-
tionally, we verified that a replay attack is not possible.

6.4. Performance evaluation

We evaluate the performance overhead of our system
by integrating the SecurePay normal-world library into a
native library and then bundling it with a custom Android
banking app. Since transactions are relatively infrequent
events, throughput is not of paramount importance. In-
stead, we demand that each operation involved in reg-
istration and transaction verification takes a “reasonable”
time—no longer than one or two seconds, say. For this, we
measure the time taken by the core operations of Secure-
Pay using the System.nanoTime() function, available
in the Java library. We invoke each core operation 1,000
times and report the average value in seconds. We conduct
this experiment on a Samsung Galaxy S8.

SecurePay takes 1.34 seconds to generate a 2,048 bit
RSA key pair and to retrieve the public key from the
secure world, and 1.91 seconds to generate an RSA key
pair and the display QR code of the public key on a
trusted screen. Note that key generation happens only
once. Finally, it takes 1.29 seconds to decrypt and display
a transaction summary of 100 bytes on the trusted screen,
including SMS retrieval from the inbox, a world switch,
decrypting and displaying the message. The performance
of SecurePay is directly proportional to the performance
of each component in the TEE (such as the cryptographic

TABLE 2: Open-source apps modified to utilize SecurePay

Android apps LoC added Time taken

Wordpress login 20 < 30 minutes
InboxPager login 20 < 30 minutes
Openshop.io login 20 < 30 minutes
OpenRedmine login 20 < 30 minutes
Quill login 20 < 30 minutes
Yaaic login 20 < 30 minutes
Seadriod login 20 < 30 minutes
Slide login 20 < 30 minutes
Kandriod login 20 < 30 minutes
Photobook login 20 < 30 minutes

services, secure-storage services, trusted UI, etc.). We
expect that for all practical applications, SecurePay can be
enabled on commodity smartphones with little additional
overhead.

6.5. Integration effort

Any mobile vendor implementing a TEE according
to the GP specification can use the SecurePay TA [57].
Financial app developers can easily integrate SecurePay
into their apps by linking the provided user-space library.

The apps that are already using SMS-based mobile
2FA do not require any change in their mobile app.
However, the developers need to add 45 lines of code
on the server side to encrypt the transaction summary
and/or OTP using the user’s public key. For the developers
who want to use the second (fully integrated) model, we
measured the effort that it requires to integrate SecurePay
in a mobile application. For this purpose, we picked 10
open-source Android apps that have a login activity from
Github [58], [59] and recorded the time required for a
full integration of SecurePay. To ensure the diversity we
picked the apps randomly from the following categories:
shopping, business, social network, productivity, etc.

Table 2 shows that the app developer can link the
SecurePay Android library and fully integrate SecurePay
using only 20 LoC. 16 of these LoC are to configure the
app to use the SecurePay TA, while 4 are to invoke the
relevant SecurePay API (mentioned in the implementa-
tion section 5.1). The table also shows that it took one
researcher (unfamiliar with the target app) less than 30
minutes to add SecurePay support to any app.

6.6. Comparison with similar efforts

TrustPAY [11] proposes a design to ensure security
and to protect the privacy of a mobile payment (m-
payment); however, under the threat model considered in
the current paper, it fails to protect both. In this part, we
explain how TrustPAY works, possible attacks against it
and how SecurePay successfully deals with such prob-
lems. We depict the underlying protocol of TrustPay in
Figure 8 (taken directly and unmodified from TrustPAY)
for protecting an m-payment transaction. In short, Trust-
PAY works as follows. Any normal world (NW) app can
use TrustPAY to make a secure m-payment following a
series of steps:

1) The TrustPAY component of the NW app requests
a new/existing RSA key pair to the TrustPAY

Figure 8: TrustPAY for m-payments.

trusted app (TA), which runs inside the secure
world (TA checks for an existing key pair; in
case this is not found, it generates a new RSA
key pair).

2) TA saves the newly generated private key
(T RSAPRI) inside the secure world and shares
the public key (T RSAPUB) at the NW app.

3) Once the user places an order, the financial
app in NW encrypts the order information using
T RSAPUB key and sends the encrypted order
information to the TA.

4) The TA decrypts the order information using its
T RSAPRI key and displays it on the Trusted UI.

5) TrustPAY requests the bank for its public key by
sharing T RSAPUB.

6) The bank encrypts its public key (R RSAPUB)
with T RSAPUB and sends it to the TA.

7) The user can now verify the order details dis-
played on the Trusted UI and if she wants to
pay the order, the user needs to enter the account
number, password and verification code on the
same Trusted UI.

8) Finally, the TA encrypts the user’s private data
with the public key of the bank, and sends the
information back to the bank.

Let us analyze how an attacker can leak the user’s
private data (for example the account number or password)
and hijack an in principle TrustPAY-protected transaction.
We consider TrustPAY and the threat model assumed in
this paper, i.e., the attacker already has root access on the
device. In this case, when TrustPAY requests the bank’s
public key, the attacker can send an attacker-controlled
RSA public key to the TA (instead of the bank’s pub-
lic key). This means that, when the user confirms the
payment, TA encrypts the user’s private data and con-
firmation status of the order using the attacker-controlled
public key. Now the attacker can decrypt the user’s private
data, modify the transaction/order confirmation status,
and encrypt it with the bank’s public key, before the
normal app relays it to the remote server. The remote
server then decrypts the request with the bank’s private
key and confirms the fraudulent m-payment. Moreover,
it should be noted that the attacker can also display the
user-expected transaction/order details on the Trusted UI
by just encrypting it with TA’s public key (T RSAPUB),
which is accessible to NW. As we have already discussed

above, SecurePay can protect the user from such man-
in-the-mobile attacks. Moreover, SecurePay can also be
used for PC-initiated financial transactions, which are not
supported by TrustPAY.

In concurrent work, VButton [25] provides a system
for enabling a mobile service provider to verify the au-
thenticity of a user-driven operation originated from an
untrusted client device. VButton requires integration at
both client- and server-side to validate each user-driven
operation. Moreover, it neither provides a Trusted UI
indicator nor a secure way to register the public key to
the service provider/attestation server. Without a Trusted
UI indicator and a secure bootstrap protocol, VButton
is susceptible to timing-based and MitB attacks. In the
timing-based attack, an attacker can show a different value
to the user in the untrusted UI and switch to the Trusted
UI with the correct value right before the user confirms
the transaction. This can be mitigated with a check by the
developer to ensure the user has had enough time in the
Trusted UI, but this is not explored in the paper. In the
MitB attack, the attacker could register their own public
keys with a user’s account, either by initiating a binding
request themselves or by replacing the public key with
their own when the user’s binding request is in transit.
Furthermore, the lack of a secure registration process also
makes VButton vulnerable to relay attack as mentioned in
the paper [25]. Compared to VButton, SecurePay’s design
is simple, complete, practical and formally proven to be
secure. SecurePay can even be used as a secure drop-
in replacement for existing (insecure) SMS-based 2FA
without requiring any code change at the client-side.

Most of the hardware-based solutions [10], [20], [60]
that are available in the market also fail to protect users
from the aforementioned attacks, because these solutions
can only be used to ensure the authenticity of the action
and ignore its integrity properties. Moreover, these solu-
tions have a variety of drawbacks. First, most of them are
only for PCs. Second, hardware solutions are cumbersome
in firmware upgrades. Third, they typically cost tens of
dollars per token [61] and, fourth, they are inconvenient
to carry around.

ZTIC [9] proposes a hardware-based solution for de-
fending against man-in-the-middle. Compared to Secure-
Pay, ZTIC ensures the integrity of PC-initiated banking
transactions only. Furthermore, ZTIC requires a prede-
termined list of banks and additional modifications to
the client, such as installing HTTP parsing profiles, user
credentials, and X.509 certificates for supporting each new
service. SecurePay does not require changes of the client
code, requires no extra hardware, and protects both PC-
initiated and mobile-initiated transactions.

We depict how SecurePay compares to related solu-
tions using a series of key properties in Table 3. To the
best of our knowledge, SecurePay is the only system that
(1) requires no change at the client side to support a new
financial service, (2) ensures the integrity and authentic-
ity of transactions even for fully compromised clients,
(3) does not require any additional hardware (beyond the
TEE already present in almost all smartphones today),
and finally, (4) protects from strong attack vectors such
as MitB and MitM.

2FA Soln. Authenticity Integrity MitM MitB Mobile PC Generic client No hardware cost
TOTP [13] 3 7 7 7 3 3 7 3

TrustPAY [11] 3 7 7 7 3 7 7 3
VButton 3 3 7 7 3 7 7 3
ZTIC [9] 3 3 7 3 7 3 7 7

RSA SecurID [20] 3 7 7 7 3 3 7 7
Yubikey [10] 3 7 7 7 3 3 7 7

E.dentifier2 [12] 3 7 7 7 7 3 7 7
Authenticator [14], [21] 3 7 7 7 3 3 7 3

SecurePay 3 3 3 3 3 3 3 3

TABLE 3: Comparison: SecurePay ensures the integrity and authenticity of a transaction, protects from man-in-the-mobile (MitM)
and MitB attacks, supports both PC and mobile platforms, requires no change of the client for supporting a new service
provider, and does not require additional hardware.

7. Discussion

We discuss other security aspects of SecurePay.
Availability: SecurePay does not guarantee availabil-

ity at all. We assume that the mobile app runs on a
compromised device. For instance, attackers can simply
turn off the code that implements the SecurePay API. In
that case, any forthcoming transactions will fail. Even so,
no malicious transactions are possible.

Replay attack: We assume that (i) the remote service
generates a unique OTP for each transaction request it
receives, (ii) the remote service accepts the OTP only
once, and (iii) the OTP expires after a short period to
protect from replay attack. In Section 6.3 we formally
verified that SecurePay is not vulnerable to replay attack.

SIM-jacking: SIM-jacking is an attack where the
attacker convinces a victim’s carrier to switch victim’s
phone number over to a SIM card that the attacker owns to
bypass the current phone-based 2FA. SIM-jacking attacks
have been widely used to hack into social media accounts,
steal cryptocurrencies, and break into bank accounts [62]–
[64]. SecurePay is not vulnerable to such attacks because
SecurePay is not dependent on the SIM card.

Insecure TEEs: SecurePay assumes a secure imple-
mentation of TEE. If the TEE implementation has bugs,
the attackers can exploit them to steal the private key from
the TEE. Orthogonal to this work, formal verification can
be used to ensure TEE is free of software bugs [65].

Microarchitectural attacks on TEEs: Defending
against microarchitectural attacks on TEE is orthogonal
to this research. Currently, SecurePay assumes a secure
implementation of TEE. For instance, precautions such
as constant-time software and microarchitectural resource
flushing are known techniques again cache and speculation
attacks. The attacks based on power/voltage glitching
can be mitigated by following the standard practice of
disallowing access to power/voltage regulators from the
normal world. In the case of Rowhammer [18], [19],
[66], [67], to the best of our knowledge, there is no real-
world attack that can compromise TEE. The only known
attack triggers uncontrolled flips in TEE only when normal
world’s memory is allocated next to TEE. This is almost
never the case in real devices (including our test phone).
Nevertheless, even this weak attack can be mitigated by
adding guard rows [68], [69].

8. Related work

2FA has been used to authenticate and protect financial
transactions for many years. Multiple different ways to

implement 2FA have been used: SMS-based, software-
based, and hardware-based.

The most widely adopted approach nowadays is SMS-
based Mobile 2FA2, probably because it has practical
advantage over some other methods in that it requires
no additional hardware to store and handle the secondary
authentication token. Services using SMS-based 2FA send
an OTP and transaction summary in the form of an SMS
to the user’s mobile device, so that the user can verify the
transaction details and confirm the transaction by entering
the received OTP.

Recently, the National Institute of Standards and Tech-
nology at the US Department of Commerce stated that
since SMS messages can be intercepted and redirected,
implementers should consider an alternative authentication
mechanism [7].

Besides SMS, over the last few years software-based
2FA implementations for authentication and transaction
verification have become very popular. Software-based
OTPs are usually generated by means of a form of soft-
ware application. This could be an app running on the
smartphone that generates OTPs from the seed record
along with the device clock and an OTP generating
algorithm. Google’s Authenticator [21] and Microsoft’s
Azure Authenticator [14] are examples of such solutions
and can be enabled for dozens of web services like
Google, Microsoft Online, WordPress, Joomla, Amazon
Web Services, Facebook and Dropbox. However, as we
discussed earlier, software-based 2FA solutions cannot
protect the user in the scenario where her mobile device
is compromised.

As an alternative to such systems, hardware-based 2FA
solutions rely on a separate piece of hardware, equipped
with a small screen that is capable of generating OTP
and displaying it. Today, several hardware-based solutions
are available in the market, such as Yubikey [10], RSA
SecurID [20] and E.dentifier2 [12]. Hardware-based 2FA
is considered to be better than SMS-based and software-
based solutions. However, it comes with an additional cost
and causes inconvenience. Moreover, these solutions are
used for authentication purposes – not for ensuring the
integrity of a transaction.

Alexandra et al. [8] analyzed potential attacks against
mobile 2FA and provided possible solutions against those
attacks. Research [6] has shown how synchronization fea-
tures and cross-platform services can be used to elevate
a regular PC-based Man-in-the-Browser to an accompa-
nying Man-in-the-Mobile threat and bypass SMS-based

2. https://twofactorauth.org/

2FA. Our work provides protection from all these attack
vectors.

Lenin et al. [70] propose a design for secure e-
commerce transactions, but fail to protect from MitM
attacks. Note that since the underlying Nizza architecture
provides a software-level secure execution domain, one
could port SecurePay to it to support any type of elec-
tronic commerce application (in addition to AppCore’s
cart-based ones). Norman et al. [71] demonstrate how to
implement a secure graphical user interface to provide
isolation between clients to prevent spying on each other,
but does not protect users from MitB/MitM. The problem
for SecurePay is different, since here we assume the entire
(normal world) system may be compromised, including
even the operating system kernel, and the objective is to
guarantee that the user can distinguish outputs from the
trusted app from those of regular programs.

A series of academic efforts involve the development
of trusted applications for security solutions. Azab et
al. [72] propose a system that provides real-time protection
of the OS kernel using TrustZone (TZ). Santos et al. [73]
use TrustZone to build a trusted-language runtime to
protect the confidentiality and integrity of .NET mobile
applications running in the normal world. Li et al. [74]
propose a verifiable mobile advertisement framework to
detect and prevent advertisement frauds using TrustZone.
Marforio et al. [75] propose a location-based second-
factor authentication mechanisms for payment at point-
of-sale. Pirker at al. [76] propose a framework to protect
the privacy of the user when a payment is made by
mobile apps. In contrast, our work ensures authenticity
and integrity of a transaction–rather than privacy. Truz-
Droid [47] proposes a design to integrate the TEE with the
mobile operating system to allow any app to leverage the
TEE and builds a prototype on a Hikey board. Unlike Se-
curePay, Truz-Droid requires modification of the operating
system, additional hardware support (a LED controlled by
the TEE), and still, neither provides an easily adoptable
drop-in solution for the banking apps nor supports PC-
initiated transactions.

TrustOTP [13] has shown how to convert smartphones
into secure OTP tokens. TrustOTP can be used to protect
authenticity of any transaction but unlike our work, it does
not also protect the integrity of a financial transaction.
Moreover, TrustOTP has to be updated with the OTP gen-
erating algorithm used by each service provider, while Se-
curePay is decoupled from the OTP generating algorithm
used by the service provider. Meanwhile, TrustPAY [11]
proposes a payment system to ensure security and to
protect privacy of mobile transactions. However, as we
discussed in section 6 in more detail, certain flaws in their
design allow the OS running in the normal world to leak
the user’s private information and to modify transaction
details. Similarly, as discussed in the section 6, VButton
proposes a system to enable a mobile service provider to
verify the authenticity of user-driven operation; however,
it lacks the Trusted UI indicator and the secure public-
key registration process which are required to protect from
timing-based, MitB and relay attacks.

Kellner et al. [77] claim that there is tremendous
popularity among regular users for customizing their de-
vices through jailbreaks. Jailbreaks remove vital security
mechanisms, which are necessary to ensure a trusted envi-

ronment that allows to protect sensitive data, such as login
credentials and transaction numbers (TANs). The study
shows that all but one banking app, available in the App
Store, can be fully compromised by trivial means with-
out reverse-engineering, manipulating the app, or other
sophisticated attacks. Hence, the study pleads for more
advanced defensive measures for protecting user data. The
formally verified SecurePay design is a practical solution
for this problem.

Finally, regarding the TEE, various vendors offer their
own TEEs: OP-TEE [78], Trustonic [79], QSEE [80],
SierraTEE [81], T6 [82], and MobiCore [83], and each of
these TEEs comes with an SDK which helps developers
to build trusted apps for the secure world.

9. Conclusions

In this paper, we explored the risks associated with
using a single mobile device for payments, even when
enhanced authentication, such as 2FA is in place. We
stressed that strong attackers can compromise the poten-
tially vulnerable device and render 2FA completely use-
less. In parallel, we argued that sensitive applications, such
as payment systems, gain limited security with using 2FA
for several actions—not just for signing in, but also for
issuing sensitive transactions. Following up, we defined a
strong threat model, where stealthy attackers compromise
smartphones for hijacking user-initiated payments that are
otherwise protected with 2FA. We therefore identified
the necessary requirements for facilitating a system, that
leverages 2FA for securing the user’s actions, even when
compromised. The key property of our analysis is that
2FA should not be considered for protecting authentic-
ity only, but also for the integrity of individual actions
(i.e., the contents of a financial transaction). We, finally,
presented SecurePay, a fully working prototype, based on
commodity technologies such as ARM’s TrustZone, for
realizing smartphones that allow users to perform Internet
banking (and similar transaction activities) securely, even
when their device is compromised.

10. Acknowledgments

We thank the anonymous reviewers for their valuable
comments and input to improve the paper. This research
was supported by the MALPAY consortium, consisting of
the Dutch national police, ING, ABN AMRO, Rabobank,
Fox-IT, and TNO. This paper represents the position of
the authors and not that of the aforementioned consor-
tium partners. This work further received funding from
European Union’s Horizon 2020 research and innova-
tion program under grant agreements No. 786669 (Re-
Act), No. 830929 (CyberSec4Europe), the Netherlands
Organisation for Scientific Research under grant agree-
ment 016.Veni.192.262, and the RESTART program of the
Research Promotion Foundation, under grant agreement
ENTERPRISES/0916/0063 (PERSONAS).

References

[1] J. Gu, V. Zhang, and S. Shen, “ZNIU: First android malware to
exploit dirty cow vulnerability,” 2017. [Online]. Available:
https://blog.trendmicro.com/trendlabs- security- intelligence/zniu-
first-android-malware-exploit-dirty-cow-vulnerability/

[2] D. Goodin, “Attackers exploit 0-day vulnerability that
gives full control of android phones,” 10 2019. [Online].
Available: https://arstechnica.com/information- technology/2019/
10/attackers-exploit-0day-vulnerability-that-gives-full-control-of-
android-phones/

[3] E. Xu and J. C. Chen, “First active attack exploiting cve-2019-
2215 found on google play, linked to sidewinder apt group,” 1
2020. [Online]. Available: https://blog.trendmicro.com/trendlabs-
security-intelligence/first-active-attack-exploiting-cve-2019-2215-
found-on-google-play-linked-to-sidewinder-apt-group/

[4] Board of Governors of the Federal Reserve System, Consumers and
Mobile Financial Services, 2016, https://www.federalreserve.gov/
econresdata / consumers - and - mobile - financial - services - report -
201603.pdf.

[5] R. Jones, “Mobile banking on the rise as payment via apps
soars by 54% in 2015,” 2016. [Online]. Available: https:
//www.theguardian.com/business/2016/jul/22/mobile-banking-on-
the-rise-as-payment-via-apps-soars-by-54-in-2015

[6] R. K. Konoth, V. van der Veen, and H. Bos, “How anywhere
computing just killed your phone-based two-factor authentication,”
in Proceedings of the 20th International Conference on Financial
Cryptography and Data Security (FC), 2016.

[7] P. A. Grassi, J. L. Fenton, E. M. Newton, R. A. Perlner,
and A. R. Rege, “Digital identity guidelines – authentication
and lifecycle management,” 2017. [Online]. Available: https:
//doi.org/10.6028/NIST.SP.800-63b

[8] A. Dmitrienko, C. Liebchen, C. Rossow, and A.-R. Sadeghi, “On
the (in)security of mobile two-factor authentication,” in Proceed-
ings of the 18th International Conference on Financial Cryptog-
raphy and Data Security (FC), 2014.

[9] T. Weigold, T. Kramp, R. Hermann, F. Höring, P. Buhler, and
M. Baentsch, “The Zurich trusted information channel – an ef-
ficient defence against man-in-the-middle and malicious software
attacks,” in Proceedings on the 1st International Conference on
Trusted Computing - Challenges and Applications (TRUST), 2008.

[10] Yubico, “Yubikey.” [Online]. Available: https://www.yubico.com/

[11] X. Zheng, L. Yang, J. Ma, G. Shi, and D. Meng, “Trustpay: Trusted
mobile payment on security enhanced ARM TrustZone platforms,”
in Proceedings of the 21st IEEE Symposium on Computers and
Communication (ISCC), 2016.

[12] ABN AMRO, “E.dentifier2.” [Online]. Available: https:
//www.abnamro.nl/en/images/Generiek/PDFs/Overig/edentifier2
usermanual english.pdf

[13] H. Sun, K. Sun, Y. Wang, and J. Jing, “Trustotp: Transforming
smartphones into secure one-time password tokens,” in Proceed-
ings of the 22nd ACM Conference on Computer and Communica-
tions Security (CCS), 2015.

[14] Microsoft, “Microsoft Authenticator.” [Online]. Available:
https://www.microsoft.com/en-us/store/p/microsoft-authenticator/
9nblgggzmcj6

[15] H. Meng, V. L. L. Thing, Y. Cheng, Z. Dai, and L. Zhang, “A
survey of android exploits in the wild,” in Computers & Security,
2018.

[16] CVE-2016-5195, “A privilege escalation vulnerability in the linux
kernel,” 2019. [Online]. Available: https://dirtycow.ninja/

[17] Github Repository, “A collection of android exploits,” 2018. [On-
line]. Available: https://github.com/sundaysec/Android-Exploits

[18] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Mau-
rice, G. Vigna, H. Bos, K. Razavi, and C. Giuffrida, “Drammer:
Deterministic rowhammer attacks on mobile platforms,” in Pro-
ceedings of the 23rd ACM Conference on Computer and Commu-
nications Security (CCS), 2016.

[19] V. van der Veen, M. Lindorfer, Y. Fratantonio, H. P. Pillai, G. Vi-
gna, C. Kruegel, H. Bos, and K. Razavi, “GuardION: Practical
mitigation of dma-based rowhammer attacks on ARM,” in Pro-
ceedings of the 15th Conference on Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA), 2018.

[20] EMC2, “RSA SecureID Hardware Tokens.” [Online]. Avail-
able: https://www.rsa.com/en-us/products/identity-and-access-
management/securid-hardware-tokens

[21] Google, “Google Authenticator.” [Online]. Available: https:
//github.com/google/google-authenticator

[22] J. H. Saltzer and M. Schroeder, “The protection of information in
computer systems,” Proceedings of the IEEE, vol. 63, no. 9, pp.
1278–1308, 9 1975.

[23] C. Herley and D. Florencio, “How to login from an internet café
without worrying about keyloggers,” in Proceedings of the 2nd

Symposium on Usable Privacy and Security (SOUPS), 2006.

[24] J. Hong, “The state of phishing attacks,” Communications of the
ACM, vol. 55, no. 1, pp. 74—-81, 1 2012.

[25] W. Li, S. Luo, Z. Sun, Y. Xia, L. Lu, H. Chen, B. Zang, and
H. Guan, “VBtton: Practical attestation of user-driven operations in
mobile apps,” in Proceedings of the 16th International Conference
on Mobile Systems, Applications, and Services (MobiSys), 2018.

[26] D. A. Ortiz-Yepes, R. J. Hermann, H. Steinauer, and P. Buh-
lerr, “Bringing strong authentication and transaction security to
the realm of mobile devices,” in IBM Journal of Research and
Development, 2014.

[27] R. van Rijswijk-Deij and E. Poll, “Using trusted execution envi-
ronments in two-factor authentication: comparing approaches,” in
Proceedings of the 1st Open Identity Summit (OID), 2013.

[28] F. Zhang and H. Zhang, “SoK: A study of using hardware-assisted
isolated execution environments for security,” in Proceedings of the
5th Workshop on Hardware and Architectural Support for Security
and Privacy (HASP), 2016.

[29] P. Gullberg, “Trusted execution environment, trustzone and mobile
security,” OWASP göteborg: security tapas, 2015.

[30] GlobalPlatform, TEE System Architecture Version 1.1.0.10, 2018,
GPD SPE 009.

[31] S. A. Bailey, D. Felton, V. Galindo, F. Hauswirth, J. Hirvimies,
M. Fokle, F. Morenius, C. Colas, J.-P. Galvan, G. Bernabeu et al.,
“The trusted execution environment: Delivering enhanced security
at a lower cost to the mobile market,” GlobalPlatform Device
Technology, Tech. Rep., 2011.

[32] J.-E. Ekberg, K. Kostiainen, and N. Asokan, “The untapped po-
tential of trusted execution environments on mobile devices,” in
Proceedings of the 35th IEEE Symposium on Security and Privacy
(S&P), 2014.

[33] GlobalPlatform, TEE Client API Specification Version 1.0, 2010,
GPD SPE 007.

[34] GlobalPlatform, TEE Internal API Specification Version 1.0, 2014,
GPD EPR 017.

[35] T. Alves and D. Felton, “TrustZone: Integrated Hardware and
Software Security,” Tech. Rep., 2004.

[36] J. Winter, “Experimenting with ARM TrustZone – or: How i
met friendly piece of trusted hardware,” in Proceedings of the
11th International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom), 2012.

[37] ARM, “ARM security technology: Building a secure system using
TrustZone technology,” Tech. Rep., 2009.

[38] J. J. Drake, “Google Android - ”Stagefright” Remote Code
Execution (CVE-2015-1538),” 2015. [Online]. Available: https:
//www.exploit-db.com/exploits/38124

[39] D. Vyukov, “Use-After-Free Remote Code Execution
Vulnerability (CVE-2016-7117),” 2016. [Online]. Available:
https://www.exploit-db.com/exploits/38124

[40] G. Gogniat, T. Wolf, W. Burleson, J. P. Diguet, L. Bossuet,
and R. Vaslin, “Reconfigurable hardware for high-security/ high-
performance embedded systems: The SAFES perspective,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 16, no. 2, pp. 144–155, 2 2008.

[41] FuturePlus System, DDR2 800 bus analysis probe, 2016, https://
www.yumpu.com/en/document/view/41592980/fs2334-ddr2-800-
mt-s-dimm-analysis-probe-futureplus-systems.

[42] T. Müller and M. Spreitzenbarth, “FROST: forensic recovery
of scrambled telephones,” in Proceedings of the 11th Interna-
tional Conference on Applied Cryptography and Network Security
(ACNS), 2013.

[43] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten,
“Lest we remember: Cold boot attacks on encryption keys,” in
Proceedings of the 17th USENIX Security Symposium (USENIX
SEC), 2008.

[44] Samsung, Trusted Boot, https : / / docs.samsungknox.com /
whitepapers/knox-platform/trusted-boot.htm.

[45] N. Johnson, “Qualcomm’s chain of trust,” 2018. [Online].
Available: https://lineageos.org/engineering/Qualcomm-Firmware/

[46] G. A. Miller, “The magical number seven, plus or minus two: some
limits on our capacity for processing information,” Psychological
review, vol. 101, no. 2, p. 343, 4 1994.

[47] K. Ying, A. Ahlawat, B. Alsharifi, Y. Jiang, P. Thavai, and W. Du,
“TruZ-Droid: Integrating trustzone with mobile operating system,”
in Proceedings of the 16th International Conference on Mobile
Systems, Applications, and Services (MobiSys), 2018.

[48] C. Castillo, “Phishing attack replaces android banking apps with
malware,” 2013. [Online]. Available: https://www.mcafee.com/
blogs/other-blogs/mcafee- labs/phishing-attack- replaces-android-
banking-apps-with-malware/

[49] F. Assolini, “SMiShing and the rise of mobile banking attacks,”
2016. [Online]. Available: https://securelist.com/smishing-and-
the-rise-of-mobile-banking-attacks/75575/

[50] J. Wyke, “What is Zeus?” 2011. [Online]. Available: https:
//www.sophos.com/en-us/medialibrary/PDFs/technical%20papers/
Sophos%20what%20is%20zeus%20tp.pdf

[51] Symantec, “Dyre: Emerging threat on financial fraud landscape,”
Symantec, Tech. Rep., 2015.

[52] Dick O’Brien, “Dridex: Tidal waves of spam pushing dangerous
financial trojan,” Symantec, Tech. Rep., 2016.

[53] L. Kharouni, “Automating online banking fraud,” 2012.
[Online]. Available: https://www.trendmicro.de/cloud-content/
us/pdfs/security-intelligence/white-papers/wp automating online
banking fraud.pdf

[54] P. Gühring, “Concepts against man-in-the-browser attacks,” 2006.
[Online]. Available: http://www.cacert.at/svn/sourcerer/CAcert/
SecureClient.pdf

[55] S. Meier, B. Schmidt, C. Cremers, and D. A. Basin, “The tamarin
prover for the symbolic analysis of security protocols,” in Pro-
ceedings of the 25th International Conference on Computer Aided
Verification (CAV), 2013.

[56] D. Dolev and A. C.-C. Yao, “On the security of public key
protocols,” in Proceedings of the 22nd Symposium on Foundations
of Computer Science (SFCS), 1981.

[57] GlobalPlatform, “Certified products.” [Online]. Available: https:
//globalplatform.org/certified-products/

[58] Open source Android apps in Github, 2016. [Online]. Available:
https://github.com/pcqpcq/open-source-android-apps

[59] Github, “The world’s leading software development platform.”
[Online]. Available: https://github.com/

[60] A. Blom, G. de Koning Gans, E. Poll, J. de Ruiter, and R. Verdult,
“Designed to fail: A usb-connected reader for online banking,” in
Proceedings of the 17th Nordic conference on Secure IT Systems
(NordSec), 2012.

[61] ENCAP Security, “SMiShing and the rise of mobile banking
attacks,” 2016. [Online]. Available: https://securelist.com/
smishing-and-the-rise-of-mobile-banking-attacks/75575/

[62] L. Franceschi-Bicchierai, “How criminals recruit telecom
employees to help them hijack sim cards,” 2018. [Online].
Available: https://www.vice.com/en us/article/3ky5a5/criminals-
recruit-telecom-employeessim-swapping-port-out-scam

[63] B. Barrett, “How to protect yourself against a sim swap
attack,” 2018. [Online]. Available: https://www.wired.com/story/
sim-swap-attack-defend-phone/

[64] B. Krebs, “Busting sim swappers and sim swap myths,” 2018.
[Online]. Available: https://krebsonsecurity.com/2018/11/busting-
sim-swappers-and-sim-swap-myths/

[65] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish,
T. Sewell, H. Tuch, and S. Winwood, “SeL4: Formal Verification
of an OS Kernel,” in SOSP, 2009.

[66] P. Frigo, C. Giuffrida, H. Bos, and K. Razavi, “Grand pwning
unit: Accelerating microarchitectural attacks with the gpu,” in
Proceedings of the 39th IEEE Symposium on Security and Privacy
(S&P), 2018.

[67] P. Frigo, E. Vannacci, H. Hassan, V. van der Veen, O. Mutlu,
C. Giuffrida, H. Bos, and K. Razavi, “TRRespass: Exploiting the
Many Sides of Target Row Refresh,” in S&P, 2020.

[68] F. Brasser, L. Davi, D. Gens, C. Liebchen, and A. Sadeghi, “CAn’t
Touch This: Software-only mitigation against rowhammer attacks
targeting kernel memory,” in Proceedings of the 26th USENIX
Security Symposium (USENIX SEC), 8 2016.

[69] R. K. Konoth, M. Oliverio, A. Tatar, D. Andriesse, H. Bos, C. Giuf-
frida, and K. Razavi, “ZebRAM: Comprehensive and Compatible
Software Protection Against Rowhammer Attacks,” in OSDI, Oct.
2018.

[70] L. Singaravelu, C. Pu, H. Härtig, and C. Helmuth, “Reducing tcb
complexity for security-sensitive applications: three case studies,”
in Proceedings of the 1st ACM European Conference on Computer
Systems (EuroSys), 2006.

[71] N. Feske and C. Helmuth, “A nitpicker’s guide to a minimal-
complexity secure gui,” in Proceedings of the 21nd Annual Com-
puter Security Applications Conference (ACSAC), 2005.

[72] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh,
J. Martin, and W. Shen, “Hypervision across worlds: Real-time
kernel protection from the ARM TrustZone secure world,” in
Proceedings of the 21st ACM Conference on Computer and Com-
munications Security (CCS), 2014.

[73] N. Santos, H. Raj, S. Saroiu, and A. Wolman, “Using ARM
TrustZone to build a trusted language runtime for mobile appli-
cations,” in Proceedings of the 19th international conference on
Architectural support for programming languages and operating
systems (ASPLOS), 2014.

[74] W. Li, H. Li, H. Chen, and Y. Xia, “AdAttester: Secure online
mobile advertisement attestation using trustzone,” in Proceedings
of the 13th Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys), 2015.

[75] C. Marforio, N. Karapanos, C. Soriente, K. Kostiainen, and S. Cap-
kun, “Smartphones as practical and secure location verification
tokens for payments,” in Proceedings of the 21st Annual Network
and Distributed System Security Symposium (NDSS), 2014.

[76] M. Pirker and D. Slamanig, “A framework for privacy-preserving
mobile payment on security enhanced ARM TrustZone platforms,”
in Proceedings of the 11th International Conference on Trust, Se-
curity and Privacy in Computing and Communications (TrustCom),
2012.

[77] A. Kellner, M. Horlboge, K. Rieck, and C. Wressnegger, “False
sense of security: A study on the effectivity of jailbreak detection
in banking apps,” in Proceedings of the 4th IEEE European
Symposium on Security and Privacy (EuroS&P), 2019.

[78] Linaro, “OP-TEE.” [Online]. Available: https://www.op-tee.org/
[79] Trustonic, “What is a Trusted Execution Environment (TEE)?”

[Online]. Available: https://www.trustonic.com/news/technology/
what-is-a-trusted-execution-environment-tee/

[80] Qualcomm, “Qualcomm Trusted Execution Environment (QSEE).”
[Online]. Available: https://www.qualcomm.com/

[81] Sierraware, “SierraTEE Trusted Execution Environment.”
[Online]. Available: https://www.sierraware.com/open-source-
ARM-TrustZone.html

[82] TrustKernel, “T6.” [Online]. Available: https : / /
www.trustkernel.com/products/tee/t6.html

[83] Giesecke and Devrient, “MobiCore.” [Online]. Available: https:
//www.gi-de.com/

Appendix A.
SecurePay’s TAMARIN model and its security properties

1 theory secpay
2 begin
3

4 builtins : asymmetric - encryption , hashing
5

6

7 rule trusted_zone_generates_keypair :
8 [
9 Fr (˜ privateKey)

10]
11 --[NewDevice (˜ privateKey)]->
12 [
13 ! TrustedZonePrivateKey (˜ privateKey),
14 ! TrustedZonePublicKey (pk (˜ privateKey)),
15

16 // we assume that the public key is leaked
17 Out(pk (˜ privateKey))
18]
19

20 rule human_opens_account :
21 [
22 // user may open arbitrary many accounts
23]
24 --[NewAccount ($accountNr)]->
25 [
26 ! UserAccount ($accountNr)
27]
28

29 rule human_initiates_binding_request :
30 [
31 ! TrustedZonePublicKey (publicKey),
32 ! UserAccount (accountNr)
33]
34 --[BindingRequestInitiated (publicKey)]->
35 [
36 ShowPublicKey (publicKey , accountNr) // physically show the public key at a
37 // secure terminal (in form of QR code)
38]
39

40

41

42 rule bank_receives_binding_request :
43 [
44 ShowPublicKey (key , accountNr)
45]
46 --[BankCompletesBindingRequest (key)]->
47 [
48 ! PublicKeyForAccount (accountNr , key)
49]
50

51

52 rule human_initiates_transaction :
53 let
54 // we assume that transaction_details might be deducible
55 transaction = <accountNr , $transaction_details >
56 in
57 [
58 ! UserAccount (accountNr)
59]
60 --[HonestTransactionInitiated (transaction)]->
61 [
62 HumanWaitsForTrustedDisplay (transaction),
63 Out(transaction)
64]
65

66

67

68 rule bank_new_transaction :
69 let
70 transaction = <from_account , transaction_details >
71 in
72 [
73 In(transaction),
74 Fr (˜ otp),

75 ! PublicKeyForAccount (from_account , pkAccount)
76]
77 --[BankTransactionInitiated (transaction , ˜otp)]->
78 [
79 Out(aenc{’ transaction ’, ˜otp , transaction } pkAccount),
80 BankWaitsForOTP (<˜otp , transaction >)
81]
82

83

84 // this rule is used for binding requests and transactions
85 rule trusted_zone_display_summary :
86 let
87 decryptedMessage = adec{ decryptRequest } privateKey
88 in
89 [
90 In(decryptRequest),
91 ! TrustedZonePrivateKey (privateKey)
92]
93 --[TrustedZoneSummaryDisplayed (decryptedMessage)]->
94 [
95 DisplayTransactionOnSecureScreen (decryptedMessage)
96]
97

98

99

100 rule human_confirms_transaction :
101 [
102 DisplayTransactionOnSecureScreen (<’ transaction ’, otp , <accountNr , transaction_details >>),
103 HumanWaitsForTrustedDisplay (<accountNr , transaction_details >)
104]
105 --[HumanConfirmsTransaction (accountNr , transaction_details)]->
106 [Out(otp)]
107

108

109

110 rule bank_completes_transaction :
111 [
112 In(otp),
113 BankWaitsForOTP (<otp , transaction >)
114]
115 --[TransactionCompleted (transaction)]->
116 []
117

118 //
119 // source lemma
120 // required for termination
121 //
122 //
123

124 lemma types [sources]:
125 "(All otp user transaction_details #i. TrustedZoneSummaryDisplayed (<’ transaction ’, otp , user ,

transaction_details >) @i
126 ==>
127 (
128 (Ex #j. BankTransactionInitiated (<user , transaction_details >, otp) @j) |
129 (Ex #j. KU(otp) @ j & j < i)
130)
131)"
132

133

134 //
135 // security property
136 //
137 //
138

139 lemma all_accepted_transactions_must_come_from_human :
140 "All from details #i. TransactionCompleted (<from , details >) @i ==> (Ex #j.

HonestTransactionInitiated (<from , details >) @j)"
141

142 lemma replay_attack_not_possible :
143 "All from1 details1 from2 details2 #i #j. TransactionCompleted (<from1 , details1 >) @i &

TransactionCompleted (<from2 , details2 >) @j & not #i = #j ==> (Ex #k #l.
HonestTransactionInitiated (<from1 , details1 >) @k & HonestTransactionInitiated (<from2 ,
details2 >) @l & not #k = #l)"

144

145

146

147 //

148 // sanity checks for binding
149 //
150 //
151

152 # ifdef SANITY
153 lemma new_devices_can_be_created :
154 exists - trace
155 "Ex x #i. NewDevice (x) @#i"
156

157

158

159 lemma human_can_initiate_binding_request :
160 exists - trace
161 "Ex x #i. BindingRequestInitiated (x) @#i"
162

163

164 lemma bank_can_complete_binding_request :
165 exists - trace
166 "Ex x #i. BankCompletesBindingRequest (x) @#i"
167 # endif
168

169

170 //
171 // sanity checks of transaction
172 //
173 //
174

175 # ifdef SANITY
176 lemma human_can_initiate_transaction :
177 exists - trace
178 "Ex x #i. HonestTransactionInitiated (x) @#i"
179

180

181 lemma human_can_confirm_transaction :
182 exists - trace
183 "Ex x y #i. HumanConfirmsTransaction (x,y) @#i"
184

185

186 lemma bank_honest_transaction :
187 exists - trace
188 "All n m #i. BankTransactionInitiated (n, m) @i ==> (Ex #j. HonestTransactionInitiated (n)

@j)"
189

190

191 lemma transaction_can_complete :
192 exists - trace
193 "Ex x #i. TransactionCompleted (x) @i"
194

195

196 lemma two_different_transactions_can_complete :
197 exists - trace
198 "Ex x y #i #j. TransactionCompleted (x) @#i & TransactionCompleted (y) @#j & (not (x = y))"
199 # endif
200

201 end

